Khaled M Khleifat, Nafe M Al-Tawarah, Mohammad A Al-Kafaween, We'am Al-Ksasbeh, Haitham Qaralleh, Moath Alqaraleh, Khawla D Al-Hamaideh, Yousef M Al-Saraireh, Ahmad Z Al-Sarayreh, Yaseen T Al-Qaisi, Abu Bakar Mohd Hilmi
{"title":"蜂毒在健忘症症状中的记忆增强和神经发生活性:以健忘症样阿尔茨海默病大鼠为模型","authors":"Khaled M Khleifat, Nafe M Al-Tawarah, Mohammad A Al-Kafaween, We'am Al-Ksasbeh, Haitham Qaralleh, Moath Alqaraleh, Khawla D Al-Hamaideh, Yousef M Al-Saraireh, Ahmad Z Al-Sarayreh, Yaseen T Al-Qaisi, Abu Bakar Mohd Hilmi","doi":"10.2174/1567205020666230614143027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objective: </strong>Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD.</p><p><strong>Methods: </strong>The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively.</p><p><strong>Results: </strong>During the nootropic phase, treatment groups demonstrated a significant (<i>P</i> < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (<i>P</i> < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (<i>P</i> < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (<i>P</i> < 0.05) in a dose-dependent manner.</p><p><strong>Conclusion: </strong>This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.</p>","PeriodicalId":10810,"journal":{"name":"Current Alzheimer research","volume":"20 3","pages":"190-201"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory Enhancing and Neurogenesis Activity of Honey Bee Venom in the Symptoms of Amnesia: Using Rats with Amnesia-like Alzheimer's Disease as a Model.\",\"authors\":\"Khaled M Khleifat, Nafe M Al-Tawarah, Mohammad A Al-Kafaween, We'am Al-Ksasbeh, Haitham Qaralleh, Moath Alqaraleh, Khawla D Al-Hamaideh, Yousef M Al-Saraireh, Ahmad Z Al-Sarayreh, Yaseen T Al-Qaisi, Abu Bakar Mohd Hilmi\",\"doi\":\"10.2174/1567205020666230614143027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objective: </strong>Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD.</p><p><strong>Methods: </strong>The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively.</p><p><strong>Results: </strong>During the nootropic phase, treatment groups demonstrated a significant (<i>P</i> < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (<i>P</i> < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (<i>P</i> < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (<i>P</i> < 0.05) in a dose-dependent manner.</p><p><strong>Conclusion: </strong>This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.</p>\",\"PeriodicalId\":10810,\"journal\":{\"name\":\"Current Alzheimer research\",\"volume\":\"20 3\",\"pages\":\"190-201\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Alzheimer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567205020666230614143027\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567205020666230614143027","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Memory Enhancing and Neurogenesis Activity of Honey Bee Venom in the Symptoms of Amnesia: Using Rats with Amnesia-like Alzheimer's Disease as a Model.
Background/objective: Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD.
Methods: The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively.
Results: During the nootropic phase, treatment groups demonstrated a significant (P < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (P < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (P < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (P < 0.05) in a dose-dependent manner.
Conclusion: This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.
期刊介绍:
Current Alzheimer Research publishes peer-reviewed frontier review, research, drug clinical trial studies and letter articles on all areas of Alzheimer’s disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer’s disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer’s disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer''s disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer’s disease. Current Alzheimer Research provides a comprehensive ''bird''s-eye view'' of the current state of Alzheimer''s research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.