{"title":"抗tnf -α治疗与强直性脊柱炎患者肠道菌群的关系","authors":"Qinghong Dai, Xuyang Xia, Chenjia He, Yupeng Huang, Yidan Chen, Yang Wu, Yuehong Chen, Qianqian Hou, Yang Shu, Wei Zhang, Heng Xu, Geng Yin, Qibing Xie","doi":"10.1097/FPC.0000000000000468","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Gut dysbiosis contributes to multiple autoimmune diseases, including ankylosing spondylitis, which is commonly treated with tumor necrosis factor (TNF)-α inhibitors (TNFis). Because host TNF-α levels are considered to interact with gut microbiota, we aimed to systematically investigate the microbiota profile of ankylosing spondylitis patients with anti-TNF-α-based treatment and identify potential key bacteria.</p><p><strong>Methods: </strong>Fecal samples were collected from 11 healthy controls and 24 ankylosing spondylitis patients before/after anti-TNF-α treatment, the microbiota profiles of which were evaluated by 16S ribosomal DNA amplicon sequencing and subsequent bioinformatic analysis.</p><p><strong>Results: </strong>Significantly different microbial compositions were observed in samples from ankylosing spondylitis patients compared with healthy controls, characterized by a lower abundance of short-chain fatty acid (SCFA)-producing bacteria. All patients exhibited a positive response after anti-TNF-α treatment, accompanied by a trend of restoration in the microbiota compositions and functional profile of ankylosing spondylitis patients to healthy controls. In particular, the abundance of SCFA-producing bacteria (e.g. Megamonsa and Lachnoclostridium ) was not only significantly lower in ankylosing spondylitis patients than in healthy controls and restored after anti-TNF-α treatment but also negatively correlated with disease severity (e.g. cor = -0.52, P = 8 × 10 -5 for Megamonsa ). In contrast, Bacilli and Haemophilus may contribute to ankylosing spondylitis onset and severity.</p><p><strong>Conclusions: </strong>Microbiota dysbiosis in ankylosing spondylitis patients can be restored after anti-TNF-α treatment, possibly by impacting SCFA-producing bacteria.</p>","PeriodicalId":19763,"journal":{"name":"Pharmacogenetics and genomics","volume":"32 7","pages":"247-256"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/da/0d/pgen-32-247.PMC9351697.pdf","citationCount":"2","resultStr":"{\"title\":\"Association of anti-TNF-α treatment with gut microbiota of patients with ankylosing spondylitis.\",\"authors\":\"Qinghong Dai, Xuyang Xia, Chenjia He, Yupeng Huang, Yidan Chen, Yang Wu, Yuehong Chen, Qianqian Hou, Yang Shu, Wei Zhang, Heng Xu, Geng Yin, Qibing Xie\",\"doi\":\"10.1097/FPC.0000000000000468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Gut dysbiosis contributes to multiple autoimmune diseases, including ankylosing spondylitis, which is commonly treated with tumor necrosis factor (TNF)-α inhibitors (TNFis). Because host TNF-α levels are considered to interact with gut microbiota, we aimed to systematically investigate the microbiota profile of ankylosing spondylitis patients with anti-TNF-α-based treatment and identify potential key bacteria.</p><p><strong>Methods: </strong>Fecal samples were collected from 11 healthy controls and 24 ankylosing spondylitis patients before/after anti-TNF-α treatment, the microbiota profiles of which were evaluated by 16S ribosomal DNA amplicon sequencing and subsequent bioinformatic analysis.</p><p><strong>Results: </strong>Significantly different microbial compositions were observed in samples from ankylosing spondylitis patients compared with healthy controls, characterized by a lower abundance of short-chain fatty acid (SCFA)-producing bacteria. All patients exhibited a positive response after anti-TNF-α treatment, accompanied by a trend of restoration in the microbiota compositions and functional profile of ankylosing spondylitis patients to healthy controls. In particular, the abundance of SCFA-producing bacteria (e.g. Megamonsa and Lachnoclostridium ) was not only significantly lower in ankylosing spondylitis patients than in healthy controls and restored after anti-TNF-α treatment but also negatively correlated with disease severity (e.g. cor = -0.52, P = 8 × 10 -5 for Megamonsa ). In contrast, Bacilli and Haemophilus may contribute to ankylosing spondylitis onset and severity.</p><p><strong>Conclusions: </strong>Microbiota dysbiosis in ankylosing spondylitis patients can be restored after anti-TNF-α treatment, possibly by impacting SCFA-producing bacteria.</p>\",\"PeriodicalId\":19763,\"journal\":{\"name\":\"Pharmacogenetics and genomics\",\"volume\":\"32 7\",\"pages\":\"247-256\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/da/0d/pgen-32-247.PMC9351697.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenetics and genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/FPC.0000000000000468\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenetics and genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FPC.0000000000000468","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Association of anti-TNF-α treatment with gut microbiota of patients with ankylosing spondylitis.
Objective: Gut dysbiosis contributes to multiple autoimmune diseases, including ankylosing spondylitis, which is commonly treated with tumor necrosis factor (TNF)-α inhibitors (TNFis). Because host TNF-α levels are considered to interact with gut microbiota, we aimed to systematically investigate the microbiota profile of ankylosing spondylitis patients with anti-TNF-α-based treatment and identify potential key bacteria.
Methods: Fecal samples were collected from 11 healthy controls and 24 ankylosing spondylitis patients before/after anti-TNF-α treatment, the microbiota profiles of which were evaluated by 16S ribosomal DNA amplicon sequencing and subsequent bioinformatic analysis.
Results: Significantly different microbial compositions were observed in samples from ankylosing spondylitis patients compared with healthy controls, characterized by a lower abundance of short-chain fatty acid (SCFA)-producing bacteria. All patients exhibited a positive response after anti-TNF-α treatment, accompanied by a trend of restoration in the microbiota compositions and functional profile of ankylosing spondylitis patients to healthy controls. In particular, the abundance of SCFA-producing bacteria (e.g. Megamonsa and Lachnoclostridium ) was not only significantly lower in ankylosing spondylitis patients than in healthy controls and restored after anti-TNF-α treatment but also negatively correlated with disease severity (e.g. cor = -0.52, P = 8 × 10 -5 for Megamonsa ). In contrast, Bacilli and Haemophilus may contribute to ankylosing spondylitis onset and severity.
Conclusions: Microbiota dysbiosis in ankylosing spondylitis patients can be restored after anti-TNF-α treatment, possibly by impacting SCFA-producing bacteria.
期刊介绍:
Pharmacogenetics and Genomics is devoted to the rapid publication of research papers, brief review articles and short communications on genetic determinants in response to drugs and other chemicals in humans and animals. The Journal brings together papers from the entire spectrum of biomedical research and science, including biochemistry, bioinformatics, clinical pharmacology, clinical pharmacy, epidemiology, genetics, genomics, molecular biology, pharmacology, pharmaceutical sciences, and toxicology. Under a single cover, the Journal provides a forum for all aspects of the genetics and genomics of host response to exogenous chemicals: from the gene to the clinic.