César Nieto, Sergio Camilo Blanco, César Vargas-García, Abhyudai Singh, Pedraza Juan Manuel
{"title":"PyEcoLib:一个用于模拟随机细胞大小动态的python库。","authors":"César Nieto, Sergio Camilo Blanco, César Vargas-García, Abhyudai Singh, Pedraza Juan Manuel","doi":"10.1088/1478-3975/acd897","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, there has been an increasing need for tools to simulate cell size regulation due to important applications in cell proliferation and gene expression. However, implementing the simulation usually presents some difficulties, as the division has a cycle-dependent occurrence rate. In this article, we gather a recent theoretical framework in<i>PyEcoLib</i>, a python-based library to simulate the stochastic dynamics of the size of bacterial cells. This library can simulate cell size trajectories with an arbitrarily small sampling period. In addition, this simulator can include stochastic variables, such as the cell size at the beginning of the experiment, the cycle duration timing, the growth rate, and the splitting position. Furthermore, from a population perspective, the user can choose between tracking a single lineage or all cells in a colony. They can also simulate the most common division strategies (adder, timer, and sizer) using the division rate formalism and numerical methods. As an example of PyecoLib applications, we explain how to couple size dynamics with gene expression predicting, from simulations, how the noise in protein levels increases by increasing the noise in division timing, the noise in growth rate and the noise in cell splitting position. The simplicity of this library and its transparency about the underlying theoretical framework yield the inclusion of cell size stochasticity in complex models of gene expression.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665115/pdf/","citationCount":"0","resultStr":"{\"title\":\"PyEcoLib: a python library for simulating stochastic cell size dynamics.\",\"authors\":\"César Nieto, Sergio Camilo Blanco, César Vargas-García, Abhyudai Singh, Pedraza Juan Manuel\",\"doi\":\"10.1088/1478-3975/acd897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, there has been an increasing need for tools to simulate cell size regulation due to important applications in cell proliferation and gene expression. However, implementing the simulation usually presents some difficulties, as the division has a cycle-dependent occurrence rate. In this article, we gather a recent theoretical framework in<i>PyEcoLib</i>, a python-based library to simulate the stochastic dynamics of the size of bacterial cells. This library can simulate cell size trajectories with an arbitrarily small sampling period. In addition, this simulator can include stochastic variables, such as the cell size at the beginning of the experiment, the cycle duration timing, the growth rate, and the splitting position. Furthermore, from a population perspective, the user can choose between tracking a single lineage or all cells in a colony. They can also simulate the most common division strategies (adder, timer, and sizer) using the division rate formalism and numerical methods. As an example of PyecoLib applications, we explain how to couple size dynamics with gene expression predicting, from simulations, how the noise in protein levels increases by increasing the noise in division timing, the noise in growth rate and the noise in cell splitting position. The simplicity of this library and its transparency about the underlying theoretical framework yield the inclusion of cell size stochasticity in complex models of gene expression.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/acd897\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acd897","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PyEcoLib: a python library for simulating stochastic cell size dynamics.
Recently, there has been an increasing need for tools to simulate cell size regulation due to important applications in cell proliferation and gene expression. However, implementing the simulation usually presents some difficulties, as the division has a cycle-dependent occurrence rate. In this article, we gather a recent theoretical framework inPyEcoLib, a python-based library to simulate the stochastic dynamics of the size of bacterial cells. This library can simulate cell size trajectories with an arbitrarily small sampling period. In addition, this simulator can include stochastic variables, such as the cell size at the beginning of the experiment, the cycle duration timing, the growth rate, and the splitting position. Furthermore, from a population perspective, the user can choose between tracking a single lineage or all cells in a colony. They can also simulate the most common division strategies (adder, timer, and sizer) using the division rate formalism and numerical methods. As an example of PyecoLib applications, we explain how to couple size dynamics with gene expression predicting, from simulations, how the noise in protein levels increases by increasing the noise in division timing, the noise in growth rate and the noise in cell splitting position. The simplicity of this library and its transparency about the underlying theoretical framework yield the inclusion of cell size stochasticity in complex models of gene expression.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.