{"title":"基于分子印迹共聚物的电化学传感器,用于选择性和同时测定核黄素、多巴胺和L-色氨酸。","authors":"Nagham Mahdi, Mahmoud Roushani, Zahra Mirzaei Karazan","doi":"10.1002/jmr.3053","DOIUrl":null,"url":null,"abstract":"<p>This research shows the exact detection of riboflavin (RF), dopamine (DA), and L-tryptophan (Trp) through molecularly imprinted polymer (MIP) based on the electropolymerization method. MIP was placed on the surface of the glassy carbon electrode (GCE) by electropolymerization of monomers such as catechol and para-aminophenol, in the presence of all three analytes. The introduced sensor was investigated using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical methods, for example, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The MIP/GCE performs well in terms of selectivity, reproducibility, repeatability, and stability. This sensor revealed good linear ranges of 0.005–500 μM for RF, 0.05–500 μM for DA, and 0.1–250 μM for Trp with limits of detection (LOD) as 0.0016 μM, 0.016 μM, and 0.03 μM for RF, DA, and Trp, respectively. The modified GCE was successfully applied to detect RF, DA, and Trp in serum and milk samples with satisfactory results.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrochemical sensor based on molecularly imprinted copolymer for selective and simultaneous determination of riboflavin, dopamine, and L-tryptophan\",\"authors\":\"Nagham Mahdi, Mahmoud Roushani, Zahra Mirzaei Karazan\",\"doi\":\"10.1002/jmr.3053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research shows the exact detection of riboflavin (RF), dopamine (DA), and L-tryptophan (Trp) through molecularly imprinted polymer (MIP) based on the electropolymerization method. MIP was placed on the surface of the glassy carbon electrode (GCE) by electropolymerization of monomers such as catechol and para-aminophenol, in the presence of all three analytes. The introduced sensor was investigated using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical methods, for example, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The MIP/GCE performs well in terms of selectivity, reproducibility, repeatability, and stability. This sensor revealed good linear ranges of 0.005–500 μM for RF, 0.05–500 μM for DA, and 0.1–250 μM for Trp with limits of detection (LOD) as 0.0016 μM, 0.016 μM, and 0.03 μM for RF, DA, and Trp, respectively. The modified GCE was successfully applied to detect RF, DA, and Trp in serum and milk samples with satisfactory results.</p>\",\"PeriodicalId\":16531,\"journal\":{\"name\":\"Journal of Molecular Recognition\",\"volume\":\"36 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Recognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3053\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Electrochemical sensor based on molecularly imprinted copolymer for selective and simultaneous determination of riboflavin, dopamine, and L-tryptophan
This research shows the exact detection of riboflavin (RF), dopamine (DA), and L-tryptophan (Trp) through molecularly imprinted polymer (MIP) based on the electropolymerization method. MIP was placed on the surface of the glassy carbon electrode (GCE) by electropolymerization of monomers such as catechol and para-aminophenol, in the presence of all three analytes. The introduced sensor was investigated using field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), and electrochemical methods, for example, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). The MIP/GCE performs well in terms of selectivity, reproducibility, repeatability, and stability. This sensor revealed good linear ranges of 0.005–500 μM for RF, 0.05–500 μM for DA, and 0.1–250 μM for Trp with limits of detection (LOD) as 0.0016 μM, 0.016 μM, and 0.03 μM for RF, DA, and Trp, respectively. The modified GCE was successfully applied to detect RF, DA, and Trp in serum and milk samples with satisfactory results.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.