基于生成对抗网络的高维块缺失值问题多重插值。

Zongyu Dai, Zhiqi Bu, Qi Long
{"title":"基于生成对抗网络的高维块缺失值问题多重插值。","authors":"Zongyu Dai,&nbsp;Zhiqi Bu,&nbsp;Qi Long","doi":"10.1109/icmla52953.2021.00131","DOIUrl":null,"url":null,"abstract":"<p><p>Missing data are present in most real world problems and need careful handling to preserve the prediction accuracy and statistical consistency in the downstream analysis. As the gold standard of handling missing data, multiple imputation (MI) methods are proposed to account for the imputation uncertainty and provide proper statistical inference. In this work, we propose Multiple Imputation via Generative Adversarial Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple imputation method, that can work under missing at random (MAR) mechanism with theoretical support. MI-GAN leverages recent progress in conditional generative adversarial neural works and shows strong performance matching existing state-of-the-art imputation methods on high-dimensional datasets, in terms of imputation error. In particular, MI-GAN significantly outperforms other imputation methods in the sense of statistical inference and computational speed.</p>","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"2021 ","pages":"791-798"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841955/pdf/nihms-1776623.pdf","citationCount":"12","resultStr":"{\"title\":\"Multiple Imputation via Generative Adversarial Network for High-dimensional Blockwise Missing Value Problems.\",\"authors\":\"Zongyu Dai,&nbsp;Zhiqi Bu,&nbsp;Qi Long\",\"doi\":\"10.1109/icmla52953.2021.00131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Missing data are present in most real world problems and need careful handling to preserve the prediction accuracy and statistical consistency in the downstream analysis. As the gold standard of handling missing data, multiple imputation (MI) methods are proposed to account for the imputation uncertainty and provide proper statistical inference. In this work, we propose Multiple Imputation via Generative Adversarial Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple imputation method, that can work under missing at random (MAR) mechanism with theoretical support. MI-GAN leverages recent progress in conditional generative adversarial neural works and shows strong performance matching existing state-of-the-art imputation methods on high-dimensional datasets, in terms of imputation error. In particular, MI-GAN significantly outperforms other imputation methods in the sense of statistical inference and computational speed.</p>\",\"PeriodicalId\":74528,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications\",\"volume\":\"2021 \",\"pages\":\"791-798\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8841955/pdf/nihms-1776623.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icmla52953.2021.00131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icmla52953.2021.00131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在大多数现实世界的问题中都存在缺失数据,需要仔细处理以保持下游分析中的预测准确性和统计一致性。作为处理缺失数据的金标准,提出了多重插值方法来考虑插值的不确定性并提供适当的统计推断。在这项工作中,我们提出了通过生成对抗网络(MI-GAN)进行多重输入,这是一种基于深度学习(具体来说是基于gan)的多重输入方法,可以在随机缺失(MAR)机制下工作,并得到了理论支持。MI-GAN利用了条件生成对抗神经系统的最新进展,在输入误差方面,它在高维数据集上显示出与现有最先进的输入方法相匹配的强大性能。特别是,MI-GAN在统计推断和计算速度方面明显优于其他imputation方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiple Imputation via Generative Adversarial Network for High-dimensional Blockwise Missing Value Problems.

Multiple Imputation via Generative Adversarial Network for High-dimensional Blockwise Missing Value Problems.

Missing data are present in most real world problems and need careful handling to preserve the prediction accuracy and statistical consistency in the downstream analysis. As the gold standard of handling missing data, multiple imputation (MI) methods are proposed to account for the imputation uncertainty and provide proper statistical inference. In this work, we propose Multiple Imputation via Generative Adversarial Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple imputation method, that can work under missing at random (MAR) mechanism with theoretical support. MI-GAN leverages recent progress in conditional generative adversarial neural works and shows strong performance matching existing state-of-the-art imputation methods on high-dimensional datasets, in terms of imputation error. In particular, MI-GAN significantly outperforms other imputation methods in the sense of statistical inference and computational speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信