Katsiaryna Tsarova, Ashley E Morgan, Lana Melendres-Groves, Majd M Ibrahim, Christy L Ma, Irene Z Pan, Nathan D Hatton, Emily M Beck, Meganne N Ferrel, Craig H Selzman, Dominique Ingram, Ayedh K Alamri, Mark B Ratcliffe, Brent D Wilson, John J Ryan
求助PDF
{"title":"肺血管疾病的影像学——了解右心室-肺动脉耦合。","authors":"Katsiaryna Tsarova, Ashley E Morgan, Lana Melendres-Groves, Majd M Ibrahim, Christy L Ma, Irene Z Pan, Nathan D Hatton, Emily M Beck, Meganne N Ferrel, Craig H Selzman, Dominique Ingram, Ayedh K Alamri, Mark B Ratcliffe, Brent D Wilson, John J Ryan","doi":"10.1002/cphy.c210017","DOIUrl":null,"url":null,"abstract":"<p><p>The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of \"uncoupling.\" Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Imaging in Pulmonary Vascular Disease-Understanding Right Ventricle-Pulmonary Artery Coupling.\",\"authors\":\"Katsiaryna Tsarova, Ashley E Morgan, Lana Melendres-Groves, Majd M Ibrahim, Christy L Ma, Irene Z Pan, Nathan D Hatton, Emily M Beck, Meganne N Ferrel, Craig H Selzman, Dominique Ingram, Ayedh K Alamri, Mark B Ratcliffe, Brent D Wilson, John J Ryan\",\"doi\":\"10.1002/cphy.c210017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of \\\"uncoupling.\\\" Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.</p>\",\"PeriodicalId\":10573,\"journal\":{\"name\":\"Comprehensive Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cphy.c210017\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c210017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 3
引用
批量引用