{"title":"P2Y12受体残基对血栓形成调控至关重要","authors":"M. Vidhya","doi":"10.1002/jmr.3056","DOIUrl":null,"url":null,"abstract":"<p>Thrombosis, or the formation of blood clots, can lead to serious medical conditions such as stroke, heart attack, and deep vein thrombosis. The purinoreceptor P2Y12 plays a critical role in the thrombotic pathway and is targeted for therapy to prevent clot formation. However, it is essential to balance the regulation of thrombosis to avoid adverse situations. This study focuses on the P2Y12 receptor and aims to discern the protein residue network and differentiate residues based on their intramolecular interactions. The study utilized a statistical analysis to characterize the significant residues involved in ligand interaction, which helps to identify critical residues that are essential for the function of the receptor. A parametric analysis of interactions of residues in the intraprotein interaction was conducted, which revealed significant residue-based contacts that facilitate protein interactions. By examining the interactions between residues, the mechanisms underlying protein interactions were studied and the importance of specific residues in facilitating these interactions was determined. This research provides important information on P2Y12, and the findings based on the network based significance of interacting residues may contribute to the development of new therapies that target the receptor to prevent clot formation while maintaining a balance in thrombosis regulation to avoid adverse outcomes. Ultimately, this study could lead to improved treatments for thrombotic disorders and better patient outcomes.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P2Y12 receptor residues crucial for thrombosis regulation\",\"authors\":\"M. Vidhya\",\"doi\":\"10.1002/jmr.3056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thrombosis, or the formation of blood clots, can lead to serious medical conditions such as stroke, heart attack, and deep vein thrombosis. The purinoreceptor P2Y12 plays a critical role in the thrombotic pathway and is targeted for therapy to prevent clot formation. However, it is essential to balance the regulation of thrombosis to avoid adverse situations. This study focuses on the P2Y12 receptor and aims to discern the protein residue network and differentiate residues based on their intramolecular interactions. The study utilized a statistical analysis to characterize the significant residues involved in ligand interaction, which helps to identify critical residues that are essential for the function of the receptor. A parametric analysis of interactions of residues in the intraprotein interaction was conducted, which revealed significant residue-based contacts that facilitate protein interactions. By examining the interactions between residues, the mechanisms underlying protein interactions were studied and the importance of specific residues in facilitating these interactions was determined. This research provides important information on P2Y12, and the findings based on the network based significance of interacting residues may contribute to the development of new therapies that target the receptor to prevent clot formation while maintaining a balance in thrombosis regulation to avoid adverse outcomes. Ultimately, this study could lead to improved treatments for thrombotic disorders and better patient outcomes.</p>\",\"PeriodicalId\":16531,\"journal\":{\"name\":\"Journal of Molecular Recognition\",\"volume\":\"36 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Recognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3056\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
P2Y12 receptor residues crucial for thrombosis regulation
Thrombosis, or the formation of blood clots, can lead to serious medical conditions such as stroke, heart attack, and deep vein thrombosis. The purinoreceptor P2Y12 plays a critical role in the thrombotic pathway and is targeted for therapy to prevent clot formation. However, it is essential to balance the regulation of thrombosis to avoid adverse situations. This study focuses on the P2Y12 receptor and aims to discern the protein residue network and differentiate residues based on their intramolecular interactions. The study utilized a statistical analysis to characterize the significant residues involved in ligand interaction, which helps to identify critical residues that are essential for the function of the receptor. A parametric analysis of interactions of residues in the intraprotein interaction was conducted, which revealed significant residue-based contacts that facilitate protein interactions. By examining the interactions between residues, the mechanisms underlying protein interactions were studied and the importance of specific residues in facilitating these interactions was determined. This research provides important information on P2Y12, and the findings based on the network based significance of interacting residues may contribute to the development of new therapies that target the receptor to prevent clot formation while maintaining a balance in thrombosis regulation to avoid adverse outcomes. Ultimately, this study could lead to improved treatments for thrombotic disorders and better patient outcomes.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.