Samantha Yammine, Ian Burns, Jessica Gosio, Andrew Peluso, Daniel Merritt, Brendan Innes, Brenda Coles, Wen Rui Yan, Gary D Bader, Cindi Morshead, Derek van der Kooy
{"title":"GFAP阴性原始神经干细胞及其子代在克隆分辨率下的命运鉴定。","authors":"Samantha Yammine, Ian Burns, Jessica Gosio, Andrew Peluso, Daniel Merritt, Brendan Innes, Brenda Coles, Wen Rui Yan, Gary D Bader, Cindi Morshead, Derek van der Kooy","doi":"10.1089/scd.2023.0038","DOIUrl":null,"url":null,"abstract":"<p><p>The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fate Specification of GFAP-Negative Primitive Neural Stem Cells and Their Progeny at Clonal Resolution.\",\"authors\":\"Samantha Yammine, Ian Burns, Jessica Gosio, Andrew Peluso, Daniel Merritt, Brendan Innes, Brenda Coles, Wen Rui Yan, Gary D Bader, Cindi Morshead, Derek van der Kooy\",\"doi\":\"10.1089/scd.2023.0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2023.0038\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2023.0038","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Fate Specification of GFAP-Negative Primitive Neural Stem Cells and Their Progeny at Clonal Resolution.
The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development