Jiaqi Wang, Yi Huang, Chen Zhang, Yan Ruan, Yanping Tian, Fengsheng Wang, Yixiao Xu, Meng Yu, Jiangjun Wang, Yuda Cheng, Lianlian Liu, Ran Yang, Jiali Wang, Yi Yang, Jiaxiang Xiong, Yan Hu, Rui Jian, Bing Ni, Wei Wu, Junlei Zhang
{"title":"小鼠胚胎干细胞中Dax1选择性剪接变异体的鉴定和功能评价。","authors":"Jiaqi Wang, Yi Huang, Chen Zhang, Yan Ruan, Yanping Tian, Fengsheng Wang, Yixiao Xu, Meng Yu, Jiangjun Wang, Yuda Cheng, Lianlian Liu, Ran Yang, Jiali Wang, Yi Yang, Jiaxiang Xiong, Yan Hu, Rui Jian, Bing Ni, Wei Wu, Junlei Zhang","doi":"10.1089/scd.2023.0037","DOIUrl":null,"url":null,"abstract":"<p><p>Dax1 (<i>Nr0b1</i>; Dosage-sensitive sex reversal-adrenal hypoplasia congenital on the X-chromosome gene-1) is an important component of the transcription factor network that governs pluripotency in mouse embryonic stem cells (ESCs). Functional evaluation of alternative splice variants of pluripotent transcription factors has shed additional insight on the maintenance of ESC pluripotency and self-renewal. Dax1 splice variants have not been identified and characterized in mouse ESCs. We identified 18 new transcripts of <i>Dax1</i> with putative protein-coding properties and compared their protein structures with known Dax1 protein (Dax1-472). The expression pattern analysis showed that the novel isoforms were cotranscribed with Dax1-472 in mouse ESCs, but they had transcriptional heterogeneity among single cells and the subcellular localization of the encoded proteins differed. Cell function experiments indicated that Dax1-404 repressed <i>Gata6</i> transcription and functionally replaced Dax1-472, while Dax1-38 and Dax1-225 partially antagonized Dax1-472 transcriptional repression. This study provided a comprehensive characterization of the Dax1 splice variants in mouse ESCs and suggested complex effects of Dax1 variants in a self-renewal regulatory network.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 17-18","pages":"554-564"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Functional Evaluation of Alternative Splice Variants of Dax1 in Mouse Embryonic Stem Cells.\",\"authors\":\"Jiaqi Wang, Yi Huang, Chen Zhang, Yan Ruan, Yanping Tian, Fengsheng Wang, Yixiao Xu, Meng Yu, Jiangjun Wang, Yuda Cheng, Lianlian Liu, Ran Yang, Jiali Wang, Yi Yang, Jiaxiang Xiong, Yan Hu, Rui Jian, Bing Ni, Wei Wu, Junlei Zhang\",\"doi\":\"10.1089/scd.2023.0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dax1 (<i>Nr0b1</i>; Dosage-sensitive sex reversal-adrenal hypoplasia congenital on the X-chromosome gene-1) is an important component of the transcription factor network that governs pluripotency in mouse embryonic stem cells (ESCs). Functional evaluation of alternative splice variants of pluripotent transcription factors has shed additional insight on the maintenance of ESC pluripotency and self-renewal. Dax1 splice variants have not been identified and characterized in mouse ESCs. We identified 18 new transcripts of <i>Dax1</i> with putative protein-coding properties and compared their protein structures with known Dax1 protein (Dax1-472). The expression pattern analysis showed that the novel isoforms were cotranscribed with Dax1-472 in mouse ESCs, but they had transcriptional heterogeneity among single cells and the subcellular localization of the encoded proteins differed. Cell function experiments indicated that Dax1-404 repressed <i>Gata6</i> transcription and functionally replaced Dax1-472, while Dax1-38 and Dax1-225 partially antagonized Dax1-472 transcriptional repression. This study provided a comprehensive characterization of the Dax1 splice variants in mouse ESCs and suggested complex effects of Dax1 variants in a self-renewal regulatory network.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\"32 17-18\",\"pages\":\"554-564\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2023.0037\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2023.0037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Identification and Functional Evaluation of Alternative Splice Variants of Dax1 in Mouse Embryonic Stem Cells.
Dax1 (Nr0b1; Dosage-sensitive sex reversal-adrenal hypoplasia congenital on the X-chromosome gene-1) is an important component of the transcription factor network that governs pluripotency in mouse embryonic stem cells (ESCs). Functional evaluation of alternative splice variants of pluripotent transcription factors has shed additional insight on the maintenance of ESC pluripotency and self-renewal. Dax1 splice variants have not been identified and characterized in mouse ESCs. We identified 18 new transcripts of Dax1 with putative protein-coding properties and compared their protein structures with known Dax1 protein (Dax1-472). The expression pattern analysis showed that the novel isoforms were cotranscribed with Dax1-472 in mouse ESCs, but they had transcriptional heterogeneity among single cells and the subcellular localization of the encoded proteins differed. Cell function experiments indicated that Dax1-404 repressed Gata6 transcription and functionally replaced Dax1-472, while Dax1-38 and Dax1-225 partially antagonized Dax1-472 transcriptional repression. This study provided a comprehensive characterization of the Dax1 splice variants in mouse ESCs and suggested complex effects of Dax1 variants in a self-renewal regulatory network.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development