Suzumi Kageyama, Rikako Inoue, Jonguk Park, Koji Hosomi, Hitomi Yumioka, Tomo Suka, Kazuaki Teramoto, A Yasmin Syauki, Miki Doi, Haruka Sakaue, Miyuu Miyake, Kenji Mizuguchi, Jun Kunisawa, Yasuyuki Irie
{"title":"家庭保健残疾患者通过食用麦芽米的粪便肠道微生物组的变化。","authors":"Suzumi Kageyama, Rikako Inoue, Jonguk Park, Koji Hosomi, Hitomi Yumioka, Tomo Suka, Kazuaki Teramoto, A Yasmin Syauki, Miki Doi, Haruka Sakaue, Miyuu Miyake, Kenji Mizuguchi, Jun Kunisawa, Yasuyuki Irie","doi":"10.1152/physiolgenomics.00062.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the present study was to investigate changes in the gut microbiome both during and after consumption of malted rice amazake (MR-Amazake), a fermented food from Japan, in-home healthcare patients with disabilities, including patients with severe motor and intellectual disabilities. We monitored 12 patients who consumed MR-Amazake for 6 wk and investigated them before and after the intervention as well as 6 wk after the end of intake to compare their physical condition, diet, type of their medication, constipation assessment scale, and analysis of their comprehensive fecal microbiome using 16S rRNA sequencing. Their constipation symptoms were significantly alleviated, and principal coordinate analysis revealed that 30% of patients showed significant changes in the gut microbiome after MR-Amazake ingestion. Furthermore, <i>Bifidobacterium</i> was strongly associated with these changes. These changes were observed only during MR-Amazake intake; the original gut microbiome was restored when MR-Amazake intake was discontinued. These results suggest that 6 wk is a reasonable period of time for MR-Amazake to change the human gut microbiome and that continuous consumption of MR-Amazake is required to sustain such changes.<b>NEW & NOTEWORTHY</b> The consumption of malted rice amazake (MR-Amazake) showed significant changes in the gut microbiome according to principal coordinate analysis in some home healthcare patients with disabilities, including those with severe motor and intellectual disabilities. After discontinuation of intake, the gut microbiome returned to its original state. This is the first pilot study to examine both the changes in the gut microbiome and their sustainability after MR-Amazake intake.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"647-653"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the fecal gut microbiome of home healthcare patients with disabilities through consumption of malted rice amazake.\",\"authors\":\"Suzumi Kageyama, Rikako Inoue, Jonguk Park, Koji Hosomi, Hitomi Yumioka, Tomo Suka, Kazuaki Teramoto, A Yasmin Syauki, Miki Doi, Haruka Sakaue, Miyuu Miyake, Kenji Mizuguchi, Jun Kunisawa, Yasuyuki Irie\",\"doi\":\"10.1152/physiolgenomics.00062.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the present study was to investigate changes in the gut microbiome both during and after consumption of malted rice amazake (MR-Amazake), a fermented food from Japan, in-home healthcare patients with disabilities, including patients with severe motor and intellectual disabilities. We monitored 12 patients who consumed MR-Amazake for 6 wk and investigated them before and after the intervention as well as 6 wk after the end of intake to compare their physical condition, diet, type of their medication, constipation assessment scale, and analysis of their comprehensive fecal microbiome using 16S rRNA sequencing. Their constipation symptoms were significantly alleviated, and principal coordinate analysis revealed that 30% of patients showed significant changes in the gut microbiome after MR-Amazake ingestion. Furthermore, <i>Bifidobacterium</i> was strongly associated with these changes. These changes were observed only during MR-Amazake intake; the original gut microbiome was restored when MR-Amazake intake was discontinued. These results suggest that 6 wk is a reasonable period of time for MR-Amazake to change the human gut microbiome and that continuous consumption of MR-Amazake is required to sustain such changes.<b>NEW & NOTEWORTHY</b> The consumption of malted rice amazake (MR-Amazake) showed significant changes in the gut microbiome according to principal coordinate analysis in some home healthcare patients with disabilities, including those with severe motor and intellectual disabilities. After discontinuation of intake, the gut microbiome returned to its original state. This is the first pilot study to examine both the changes in the gut microbiome and their sustainability after MR-Amazake intake.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"647-653\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00062.2023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00062.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Changes in the fecal gut microbiome of home healthcare patients with disabilities through consumption of malted rice amazake.
The aim of the present study was to investigate changes in the gut microbiome both during and after consumption of malted rice amazake (MR-Amazake), a fermented food from Japan, in-home healthcare patients with disabilities, including patients with severe motor and intellectual disabilities. We monitored 12 patients who consumed MR-Amazake for 6 wk and investigated them before and after the intervention as well as 6 wk after the end of intake to compare their physical condition, diet, type of their medication, constipation assessment scale, and analysis of their comprehensive fecal microbiome using 16S rRNA sequencing. Their constipation symptoms were significantly alleviated, and principal coordinate analysis revealed that 30% of patients showed significant changes in the gut microbiome after MR-Amazake ingestion. Furthermore, Bifidobacterium was strongly associated with these changes. These changes were observed only during MR-Amazake intake; the original gut microbiome was restored when MR-Amazake intake was discontinued. These results suggest that 6 wk is a reasonable period of time for MR-Amazake to change the human gut microbiome and that continuous consumption of MR-Amazake is required to sustain such changes.NEW & NOTEWORTHY The consumption of malted rice amazake (MR-Amazake) showed significant changes in the gut microbiome according to principal coordinate analysis in some home healthcare patients with disabilities, including those with severe motor and intellectual disabilities. After discontinuation of intake, the gut microbiome returned to its original state. This is the first pilot study to examine both the changes in the gut microbiome and their sustainability after MR-Amazake intake.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.