通过蒙特卡罗聚类重建病毒变体。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2023-09-01 Epub Date: 2023-09-11 DOI:10.1089/cmb.2023.0154
Akshay Juyal, Roya Hosseini, Daniel Novikov, Mark Grinshpon, Alex Zelikovsky
{"title":"通过蒙特卡罗聚类重建病毒变体。","authors":"Akshay Juyal, Roya Hosseini, Daniel Novikov, Mark Grinshpon, Alex Zelikovsky","doi":"10.1089/cmb.2023.0154","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying viral variants through clustering is essential for understanding the composition and structure of viral populations within and between hosts, which play a crucial role in disease progression and epidemic spread. This article proposes and validates novel Monte Carlo (MC) methods for clustering aligned viral sequences by minimizing either entropy or Hamming distance from consensuses. We validate these methods on four benchmarks: two SARS-CoV-2 interhost data sets and two HIV intrahost data sets. A parallelized version of our tool is scalable to very large data sets. We show that both entropy and Hamming distance-based MC clusterings discern the meaningful information from sequencing data. The proposed clustering methods consistently converge to similar clusterings across different runs. Finally, we show that MC clustering improves reconstruction of intrahost viral population from sequencing data.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518690/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of Viral Variants via Monte Carlo Clustering.\",\"authors\":\"Akshay Juyal, Roya Hosseini, Daniel Novikov, Mark Grinshpon, Alex Zelikovsky\",\"doi\":\"10.1089/cmb.2023.0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying viral variants through clustering is essential for understanding the composition and structure of viral populations within and between hosts, which play a crucial role in disease progression and epidemic spread. This article proposes and validates novel Monte Carlo (MC) methods for clustering aligned viral sequences by minimizing either entropy or Hamming distance from consensuses. We validate these methods on four benchmarks: two SARS-CoV-2 interhost data sets and two HIV intrahost data sets. A parallelized version of our tool is scalable to very large data sets. We show that both entropy and Hamming distance-based MC clusterings discern the meaningful information from sequencing data. The proposed clustering methods consistently converge to similar clusterings across different runs. Finally, we show that MC clustering improves reconstruction of intrahost viral population from sequencing data.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10518690/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0154\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0154","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

通过聚类识别病毒变体对于了解宿主内部和宿主之间病毒种群的组成和结构至关重要,宿主在疾病进展和流行病传播中发挥着至关重要的作用。本文提出并验证了通过最小化熵或与共识的汉明距离来聚类比对病毒序列的新蒙特卡罗(MC)方法。我们在四个基准上验证了这些方法:两个严重急性呼吸系统综合征冠状病毒2型宿主间数据集和两个艾滋病毒宿主内数据集。我们的工具的并行版本可以扩展到非常大的数据集。我们表明,基于熵和汉明距离的MC聚类都能从测序数据中识别出有意义的信息。所提出的聚类方法在不同的运行中一致地收敛到相似的聚类。最后,我们证明了MC聚类改进了从测序数据重建宿主内病毒群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of Viral Variants via Monte Carlo Clustering.

Identifying viral variants through clustering is essential for understanding the composition and structure of viral populations within and between hosts, which play a crucial role in disease progression and epidemic spread. This article proposes and validates novel Monte Carlo (MC) methods for clustering aligned viral sequences by minimizing either entropy or Hamming distance from consensuses. We validate these methods on four benchmarks: two SARS-CoV-2 interhost data sets and two HIV intrahost data sets. A parallelized version of our tool is scalable to very large data sets. We show that both entropy and Hamming distance-based MC clusterings discern the meaningful information from sequencing data. The proposed clustering methods consistently converge to similar clusterings across different runs. Finally, we show that MC clustering improves reconstruction of intrahost viral population from sequencing data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信