{"title":"三氧化二砷诱导的A549细胞毒性:坏死坏死的作用。","authors":"Maryam Jamil, Afshin Mohammadi-Bardbori, Omid Safa, Amin Reza Nikpoor, Azizollah Bakhtari, Mahnoosh Mokhtarinejad, Saghar Naybandi Zadeh, Amir Shadboorestan, Mahmoud Omidi","doi":"10.1055/a-2076-3246","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lung cancer is one of the deadliest cancers globally. Arsenic trioxide (ATO) is still present as a highly effective drug in treating acute promyelocytic leukemia (APL). Chemotherapy resistance is one of the major problems in cancer therapy. Necroptosis, can overcomes resistance to apoptosis, and can promote cancer treatment. This study examines the necroptosis pathway in A549 cancer cells exposed to ATO.</p><p><strong>Methods: </strong>We used the MTT test to determine the ATO effects on the viability of A549 cells at three different time intervals. Also, the reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were performed in three-time intervals. The effect of ATO on apoptosis was evaluated by Annexin V / PI staining and, the RIPK1 and MLKL gene expression were measured by Real-Time PCR.</p><p><strong>Results: </strong>The ATO has dose and time-dependent cytotoxic effects, so at 24, 48, and 72 h, the IC50 doses were 33.81 '11.44 '2.535 µM respectively. A 50 μM ATO is the most appropriate to increase the MMP loss significantly at all three times. At 24 and 48 h after exposure of cells to ATO, the ROS levels increased. The RIPK1 gene expression increased significantly compared to the control group at concentrations of 50 and 100 μM; however, MLKL gene expression decreased.</p><p><strong>Conclusions: </strong>The A549 cells, after 48 h exposure to ATO at 50 and 100 μM, induces apoptosis and necroptosis. Due to the reduced expression of MLKL, it can be concluded that ATO is probably effective in the metastatic stage of cancer cells.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":"73 7","pages":"417-425"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic trioxide-induced cytotoxicity in A549 cells: The role of necroptosis.\",\"authors\":\"Maryam Jamil, Afshin Mohammadi-Bardbori, Omid Safa, Amin Reza Nikpoor, Azizollah Bakhtari, Mahnoosh Mokhtarinejad, Saghar Naybandi Zadeh, Amir Shadboorestan, Mahmoud Omidi\",\"doi\":\"10.1055/a-2076-3246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Lung cancer is one of the deadliest cancers globally. Arsenic trioxide (ATO) is still present as a highly effective drug in treating acute promyelocytic leukemia (APL). Chemotherapy resistance is one of the major problems in cancer therapy. Necroptosis, can overcomes resistance to apoptosis, and can promote cancer treatment. This study examines the necroptosis pathway in A549 cancer cells exposed to ATO.</p><p><strong>Methods: </strong>We used the MTT test to determine the ATO effects on the viability of A549 cells at three different time intervals. Also, the reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were performed in three-time intervals. The effect of ATO on apoptosis was evaluated by Annexin V / PI staining and, the RIPK1 and MLKL gene expression were measured by Real-Time PCR.</p><p><strong>Results: </strong>The ATO has dose and time-dependent cytotoxic effects, so at 24, 48, and 72 h, the IC50 doses were 33.81 '11.44 '2.535 µM respectively. A 50 μM ATO is the most appropriate to increase the MMP loss significantly at all three times. At 24 and 48 h after exposure of cells to ATO, the ROS levels increased. The RIPK1 gene expression increased significantly compared to the control group at concentrations of 50 and 100 μM; however, MLKL gene expression decreased.</p><p><strong>Conclusions: </strong>The A549 cells, after 48 h exposure to ATO at 50 and 100 μM, induces apoptosis and necroptosis. Due to the reduced expression of MLKL, it can be concluded that ATO is probably effective in the metastatic stage of cancer cells.</p>\",\"PeriodicalId\":11451,\"journal\":{\"name\":\"Drug Research\",\"volume\":\"73 7\",\"pages\":\"417-425\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2076-3246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2076-3246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Arsenic trioxide-induced cytotoxicity in A549 cells: The role of necroptosis.
Introduction: Lung cancer is one of the deadliest cancers globally. Arsenic trioxide (ATO) is still present as a highly effective drug in treating acute promyelocytic leukemia (APL). Chemotherapy resistance is one of the major problems in cancer therapy. Necroptosis, can overcomes resistance to apoptosis, and can promote cancer treatment. This study examines the necroptosis pathway in A549 cancer cells exposed to ATO.
Methods: We used the MTT test to determine the ATO effects on the viability of A549 cells at three different time intervals. Also, the reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were performed in three-time intervals. The effect of ATO on apoptosis was evaluated by Annexin V / PI staining and, the RIPK1 and MLKL gene expression were measured by Real-Time PCR.
Results: The ATO has dose and time-dependent cytotoxic effects, so at 24, 48, and 72 h, the IC50 doses were 33.81 '11.44 '2.535 µM respectively. A 50 μM ATO is the most appropriate to increase the MMP loss significantly at all three times. At 24 and 48 h after exposure of cells to ATO, the ROS levels increased. The RIPK1 gene expression increased significantly compared to the control group at concentrations of 50 and 100 μM; however, MLKL gene expression decreased.
Conclusions: The A549 cells, after 48 h exposure to ATO at 50 and 100 μM, induces apoptosis and necroptosis. Due to the reduced expression of MLKL, it can be concluded that ATO is probably effective in the metastatic stage of cancer cells.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.