Julie Le Naour, Sylvain Thierry, Sarah Adriana Scuderi, Mathilde Boucard-Jourdin, Peng Liu, Marc Bonnin, Yuhong Pan, Clémence Perret, Liwei Zhao, Misha Mao, Chloé Renoux, María Pérez-Lanzón, Baptiste Martin, Oliver Kepp, Guido Kroemer, Bettina Werlé
{"title":"具有抗癌活性的化学定义的TLR3激动剂。","authors":"Julie Le Naour, Sylvain Thierry, Sarah Adriana Scuderi, Mathilde Boucard-Jourdin, Peng Liu, Marc Bonnin, Yuhong Pan, Clémence Perret, Liwei Zhao, Misha Mao, Chloé Renoux, María Pérez-Lanzón, Baptiste Martin, Oliver Kepp, Guido Kroemer, Bettina Werlé","doi":"10.1080/2162402X.2023.2227510","DOIUrl":null,"url":null,"abstract":"<p><p>Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid). In preclinical models, we show that TL-532 is bioavailable after parenteral injection, has an acceptable toxicological profile, and stimulates the production of multiple chemokines and interleukins that constitute pharmacodynamic markers of its immunostimulatory action. When given at a high dose, TL-532 monotherapy reduced the growth of bladder cancers growing on mice. In addition, in immunodeficient mice lacking formylpeptide receptor-1 (FPR1), TL-532 was able to restore the response of orthotopic subcutaneous fibrosarcoma to immunogenic chemotherapy. Altogether, these findings may encourage further development of TL-532 as an immunotherapeutic anticancer agent.</p>","PeriodicalId":19683,"journal":{"name":"Oncoimmunology","volume":"12 1","pages":"2227510"},"PeriodicalIF":7.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4c/ec/KONI_12_2227510.PMC10305499.pdf","citationCount":"3","resultStr":"{\"title\":\"A Chemically Defined TLR3 Agonist with Anticancer Activity.\",\"authors\":\"Julie Le Naour, Sylvain Thierry, Sarah Adriana Scuderi, Mathilde Boucard-Jourdin, Peng Liu, Marc Bonnin, Yuhong Pan, Clémence Perret, Liwei Zhao, Misha Mao, Chloé Renoux, María Pérez-Lanzón, Baptiste Martin, Oliver Kepp, Guido Kroemer, Bettina Werlé\",\"doi\":\"10.1080/2162402X.2023.2227510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid). In preclinical models, we show that TL-532 is bioavailable after parenteral injection, has an acceptable toxicological profile, and stimulates the production of multiple chemokines and interleukins that constitute pharmacodynamic markers of its immunostimulatory action. When given at a high dose, TL-532 monotherapy reduced the growth of bladder cancers growing on mice. In addition, in immunodeficient mice lacking formylpeptide receptor-1 (FPR1), TL-532 was able to restore the response of orthotopic subcutaneous fibrosarcoma to immunogenic chemotherapy. Altogether, these findings may encourage further development of TL-532 as an immunotherapeutic anticancer agent.</p>\",\"PeriodicalId\":19683,\"journal\":{\"name\":\"Oncoimmunology\",\"volume\":\"12 1\",\"pages\":\"2227510\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4c/ec/KONI_12_2227510.PMC10305499.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/2162402X.2023.2227510\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2023.2227510","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Chemically Defined TLR3 Agonist with Anticancer Activity.
Toll-like receptor 3 (TLR3) agonists such as polyinosinic:polycytidylic acid (poly(I:C)) have immunostimulatory effects that can be taken advantage of to induce anticancer immune responses in preclinical models. In addition, poly(I:C) has been introduced into clinical trials to demonstrate its efficacy as an adjuvant and to enhance the immunogenicity of locally injected tumors, thus reverting resistance to PD-L1 blockade in melanoma patients. Here, we report the pharmacokinetic, pharmacodynamic, mechanistic and toxicological profile of a novel TLR3 agonist, TL-532, a chemically synthesized double-stranded RNA that is composed by blocks of poly(I:C) and poly(A:U) (polyadenylic - polyuridylic acid). In preclinical models, we show that TL-532 is bioavailable after parenteral injection, has an acceptable toxicological profile, and stimulates the production of multiple chemokines and interleukins that constitute pharmacodynamic markers of its immunostimulatory action. When given at a high dose, TL-532 monotherapy reduced the growth of bladder cancers growing on mice. In addition, in immunodeficient mice lacking formylpeptide receptor-1 (FPR1), TL-532 was able to restore the response of orthotopic subcutaneous fibrosarcoma to immunogenic chemotherapy. Altogether, these findings may encourage further development of TL-532 as an immunotherapeutic anticancer agent.
期刊介绍:
Tumor immunology explores the natural and therapy-induced recognition of cancers, along with the complex interplay between oncogenesis, inflammation, and immunosurveillance. In response to recent advancements, a new journal, OncoImmunology, is being launched to specifically address tumor immunology. The field has seen significant progress with the clinical demonstration and FDA approval of anticancer immunotherapies. There's also growing evidence suggesting that many current chemotherapeutic agents rely on immune effectors for their efficacy.
While oncologists have historically utilized chemotherapeutic and radiotherapeutic regimens successfully, they may have unwittingly leveraged the immune system's ability to recognize tumor-specific antigens and control cancer growth. Consequently, immunological biomarkers are increasingly crucial for cancer prognosis and predicting chemotherapy efficacy. There's strong support for combining conventional anticancer therapies with immunotherapies. OncoImmunology will welcome high-profile submissions spanning fundamental, translational, and clinical aspects of tumor immunology, including solid and hematological cancers, inflammation, and both innate and acquired immune responses.