{"title":"癌症分子亚型肿瘤微环境的异质性。","authors":"Dharambir Kashyap, Amanjit Bal, Santosh Irinike, Siddhant Khare, Shalmoli Bhattacharya, Ashim Das, Gurpreet Singh","doi":"10.1097/PAI.0000000000001139","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a heterogenous disease at the molecular level thus, it can be hypothesized that different molecular subtypes differ in their tumor microenvironment (TME) also. Understanding the TME heterogeneity may provide new prognostic biomarkers and new targets for cancer therapy. For deciphering heterogeneity in the TME, immunohistochemistry for immune markers (CD3, CD4, CD8, CD68, CD163, and programmed death-ligand 1), Cancer-associated fibroblast markers [anti-fibroblast activating protein α (FAP-α), platelet-derived growth factor receptor α (PDGFR-α), S100A4, Neuron-glial antigen 2, and Caveolin-1], and angiogenesis (CD31) was performed on tissue microarrays of different molecular subtypes of breast cancer. High CD3 + T cells were noted in the Luminal B subtype ( P =0.002) of which the majority were CD8 + cytotoxic T cells. Programmed death-ligand 1 expression in immune cells was highest in the human epidermal growth factor receptor 2 (Her-2)-positive and Luminal B subtypes compared with the triple-negative breast cancer (TNBC) subtype ( P =0.003). Her-2 subtype is rich in M2 tumor-associated macrophages ( P =0.000) compared with TNBC and Luminal B subtypes. M2 immune microenvironment correlated with high tumor grade and high Ki-67. Her-2 and TNBC subtypes are rich in extracellular matrix remodeling (FAP-α, P =0.003), angiogenesis-promoting (PDGFR-α; P =0.000) and invasion markers (Neuron-glial antigen 2, P =0.000; S100A4, P =0.07) compared with Luminal subtypes. Mean Microvessel density showed an increasing trend: Luminal A>Luminal B>Her-2 positive>TNBC; however, this difference was not statistically significant. The cancer-associated fibroblasts (FAP-α, PDGFR-α, and Neuron-glial antigen 2) showed a positive correlation with lymph node metastasis in specific subtypes. Immune cells, tumor-associated macrophage, and cancer-associated fibroblast-related s tromal markers showed higher expression in Luminal B, Her-2 positive, and TNBC respectively. This differential expression of different components of TME indicates heterogeneity of the TME across molecular subtypes of breast cancer.</p>","PeriodicalId":48952,"journal":{"name":"Applied Immunohistochemistry & Molecular Morphology","volume":"31 8","pages":"533-543"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneity of the Tumor Microenvironment Across Molecular Subtypes of Breast Cancer.\",\"authors\":\"Dharambir Kashyap, Amanjit Bal, Santosh Irinike, Siddhant Khare, Shalmoli Bhattacharya, Ashim Das, Gurpreet Singh\",\"doi\":\"10.1097/PAI.0000000000001139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is a heterogenous disease at the molecular level thus, it can be hypothesized that different molecular subtypes differ in their tumor microenvironment (TME) also. Understanding the TME heterogeneity may provide new prognostic biomarkers and new targets for cancer therapy. For deciphering heterogeneity in the TME, immunohistochemistry for immune markers (CD3, CD4, CD8, CD68, CD163, and programmed death-ligand 1), Cancer-associated fibroblast markers [anti-fibroblast activating protein α (FAP-α), platelet-derived growth factor receptor α (PDGFR-α), S100A4, Neuron-glial antigen 2, and Caveolin-1], and angiogenesis (CD31) was performed on tissue microarrays of different molecular subtypes of breast cancer. High CD3 + T cells were noted in the Luminal B subtype ( P =0.002) of which the majority were CD8 + cytotoxic T cells. Programmed death-ligand 1 expression in immune cells was highest in the human epidermal growth factor receptor 2 (Her-2)-positive and Luminal B subtypes compared with the triple-negative breast cancer (TNBC) subtype ( P =0.003). Her-2 subtype is rich in M2 tumor-associated macrophages ( P =0.000) compared with TNBC and Luminal B subtypes. M2 immune microenvironment correlated with high tumor grade and high Ki-67. Her-2 and TNBC subtypes are rich in extracellular matrix remodeling (FAP-α, P =0.003), angiogenesis-promoting (PDGFR-α; P =0.000) and invasion markers (Neuron-glial antigen 2, P =0.000; S100A4, P =0.07) compared with Luminal subtypes. Mean Microvessel density showed an increasing trend: Luminal A>Luminal B>Her-2 positive>TNBC; however, this difference was not statistically significant. The cancer-associated fibroblasts (FAP-α, PDGFR-α, and Neuron-glial antigen 2) showed a positive correlation with lymph node metastasis in specific subtypes. Immune cells, tumor-associated macrophage, and cancer-associated fibroblast-related s tromal markers showed higher expression in Luminal B, Her-2 positive, and TNBC respectively. This differential expression of different components of TME indicates heterogeneity of the TME across molecular subtypes of breast cancer.</p>\",\"PeriodicalId\":48952,\"journal\":{\"name\":\"Applied Immunohistochemistry & Molecular Morphology\",\"volume\":\"31 8\",\"pages\":\"533-543\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Immunohistochemistry & Molecular Morphology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/PAI.0000000000001139\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Immunohistochemistry & Molecular Morphology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAI.0000000000001139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Heterogeneity of the Tumor Microenvironment Across Molecular Subtypes of Breast Cancer.
Breast cancer is a heterogenous disease at the molecular level thus, it can be hypothesized that different molecular subtypes differ in their tumor microenvironment (TME) also. Understanding the TME heterogeneity may provide new prognostic biomarkers and new targets for cancer therapy. For deciphering heterogeneity in the TME, immunohistochemistry for immune markers (CD3, CD4, CD8, CD68, CD163, and programmed death-ligand 1), Cancer-associated fibroblast markers [anti-fibroblast activating protein α (FAP-α), platelet-derived growth factor receptor α (PDGFR-α), S100A4, Neuron-glial antigen 2, and Caveolin-1], and angiogenesis (CD31) was performed on tissue microarrays of different molecular subtypes of breast cancer. High CD3 + T cells were noted in the Luminal B subtype ( P =0.002) of which the majority were CD8 + cytotoxic T cells. Programmed death-ligand 1 expression in immune cells was highest in the human epidermal growth factor receptor 2 (Her-2)-positive and Luminal B subtypes compared with the triple-negative breast cancer (TNBC) subtype ( P =0.003). Her-2 subtype is rich in M2 tumor-associated macrophages ( P =0.000) compared with TNBC and Luminal B subtypes. M2 immune microenvironment correlated with high tumor grade and high Ki-67. Her-2 and TNBC subtypes are rich in extracellular matrix remodeling (FAP-α, P =0.003), angiogenesis-promoting (PDGFR-α; P =0.000) and invasion markers (Neuron-glial antigen 2, P =0.000; S100A4, P =0.07) compared with Luminal subtypes. Mean Microvessel density showed an increasing trend: Luminal A>Luminal B>Her-2 positive>TNBC; however, this difference was not statistically significant. The cancer-associated fibroblasts (FAP-α, PDGFR-α, and Neuron-glial antigen 2) showed a positive correlation with lymph node metastasis in specific subtypes. Immune cells, tumor-associated macrophage, and cancer-associated fibroblast-related s tromal markers showed higher expression in Luminal B, Her-2 positive, and TNBC respectively. This differential expression of different components of TME indicates heterogeneity of the TME across molecular subtypes of breast cancer.
期刊介绍:
Applied Immunohistochemistry & Molecular Morphology covers newly developed identification and detection technologies, and their applications in research and diagnosis for the applied immunohistochemist & molecular Morphologist.
Official Journal of the International Society for Immunohistochemisty and Molecular Morphology.