评估针对多项目量表中经常缺失的项目的替代估算策略。

Q4 Mathematics
Panteha Hayati Rezvan, W Scott Comulada, M Isabel Fernández, Thomas R Belin
{"title":"评估针对多项目量表中经常缺失的项目的替代估算策略。","authors":"Panteha Hayati Rezvan, W Scott Comulada, M Isabel Fernández, Thomas R Belin","doi":"10.1080/23737484.2022.2115430","DOIUrl":null,"url":null,"abstract":"<p><p>Health-science researchers often measure psychological constructs using multi-item scales and encounter missing items on some participants. Multiple imputation (MI) has emerged as an alternative to <i>ad-hoc</i> methods (e.g., mean substitution) for handling incomplete data on multi-item scales, appealingly reflecting available information while accounting for uncertainty due to missing values in a unified inferential framework. However, MI can be implemented in a variety of ways. When the number of variables to impute gets large, some strategies yield unstable estimates of quantities of interest while others are not technically feasible to implement. These considerations raise pragmatic questions about the extent to which <i>ad-hoc</i> procedures would yield statistical properties that are competitive with theoretically motivated methods. Drawing on an HIV study where depression and anxiety symptoms are measured with multi-item scales, this empirical investigation contrasts <i>ad-hoc</i> methods for handling missing items with various MI implementations that differ as to whether imputation is at the item-level or scale-level and how auxiliary variables are incorporated. While the findings are consistent with previous reports favoring item-level imputation when feasible to implement, we found only subtle differences in statistical properties across procedures, suggesting that weaknesses of <i>ad-hoc</i> procedures may be muted when missing data percentages are modest.</p>","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"8 4","pages":"682-713"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718541/pdf/nihms-1835512.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing Alternative Imputation Strategies for Infrequently Missing Items on Multi-item Scales.\",\"authors\":\"Panteha Hayati Rezvan, W Scott Comulada, M Isabel Fernández, Thomas R Belin\",\"doi\":\"10.1080/23737484.2022.2115430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Health-science researchers often measure psychological constructs using multi-item scales and encounter missing items on some participants. Multiple imputation (MI) has emerged as an alternative to <i>ad-hoc</i> methods (e.g., mean substitution) for handling incomplete data on multi-item scales, appealingly reflecting available information while accounting for uncertainty due to missing values in a unified inferential framework. However, MI can be implemented in a variety of ways. When the number of variables to impute gets large, some strategies yield unstable estimates of quantities of interest while others are not technically feasible to implement. These considerations raise pragmatic questions about the extent to which <i>ad-hoc</i> procedures would yield statistical properties that are competitive with theoretically motivated methods. Drawing on an HIV study where depression and anxiety symptoms are measured with multi-item scales, this empirical investigation contrasts <i>ad-hoc</i> methods for handling missing items with various MI implementations that differ as to whether imputation is at the item-level or scale-level and how auxiliary variables are incorporated. While the findings are consistent with previous reports favoring item-level imputation when feasible to implement, we found only subtle differences in statistical properties across procedures, suggesting that weaknesses of <i>ad-hoc</i> procedures may be muted when missing data percentages are modest.</p>\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"8 4\",\"pages\":\"682-713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718541/pdf/nihms-1835512.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2022.2115430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2022.2115430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

健康科学研究人员经常使用多项目量表测量心理结构,并会遇到一些参与者缺失项目的情况。在处理多项目量表的不完整数据时,多重估算(MI)是一种可替代临时方法(如均值替换)的方法,它既能反映现有信息,又能在统一的推论框架内考虑缺失值带来的不确定性。然而,MI 的实现方式多种多样。当需要估算的变量数量变多时,有些策略会产生不稳定的相关数量估计值,而有些策略则在技术上无法实施。这些考虑因素提出了一些实用性问题,即临时程序在多大程度上能产生与理论方法相媲美的统计特性。在一项艾滋病研究中,抑郁和焦虑症状是通过多项目量表来测量的,本实证调查将处理缺失项目的临时方法与各种多元智能实现方法进行了对比,这些方法在项目层面还是量表层面的估算以及如何纳入辅助变量方面存在差异。虽然研究结果与之前的报告一致,即在可行的情况下,我们更倾向于采用项目级的估算方法,但我们发现不同方法的统计特性只有细微差别,这表明当缺失数据比例不大时,临时方法的弱点可能会被削弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing Alternative Imputation Strategies for Infrequently Missing Items on Multi-item Scales.

Assessing Alternative Imputation Strategies for Infrequently Missing Items on Multi-item Scales.

Assessing Alternative Imputation Strategies for Infrequently Missing Items on Multi-item Scales.

Health-science researchers often measure psychological constructs using multi-item scales and encounter missing items on some participants. Multiple imputation (MI) has emerged as an alternative to ad-hoc methods (e.g., mean substitution) for handling incomplete data on multi-item scales, appealingly reflecting available information while accounting for uncertainty due to missing values in a unified inferential framework. However, MI can be implemented in a variety of ways. When the number of variables to impute gets large, some strategies yield unstable estimates of quantities of interest while others are not technically feasible to implement. These considerations raise pragmatic questions about the extent to which ad-hoc procedures would yield statistical properties that are competitive with theoretically motivated methods. Drawing on an HIV study where depression and anxiety symptoms are measured with multi-item scales, this empirical investigation contrasts ad-hoc methods for handling missing items with various MI implementations that differ as to whether imputation is at the item-level or scale-level and how auxiliary variables are incorporated. While the findings are consistent with previous reports favoring item-level imputation when feasible to implement, we found only subtle differences in statistical properties across procedures, suggesting that weaknesses of ad-hoc procedures may be muted when missing data percentages are modest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信