基于时延最大信息谱系数的皮质-肌皮质功能网络分析。

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jianpeng Tang, Xugang Xi, Ting Wang, Junhong Wang, Lihua Li, Zhong Lü
{"title":"基于时延最大信息谱系数的皮质-肌皮质功能网络分析。","authors":"Jianpeng Tang,&nbsp;Xugang Xi,&nbsp;Ting Wang,&nbsp;Junhong Wang,&nbsp;Lihua Li,&nbsp;Zhong Lü","doi":"10.1088/1741-2552/acf7f7","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.<i>Approach</i>. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.<i>Main result</i>. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.<i>Significance</i>. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of corticomuscular-cortical functional network based on time-delayed maximal information spectral coefficient.\",\"authors\":\"Jianpeng Tang,&nbsp;Xugang Xi,&nbsp;Ting Wang,&nbsp;Junhong Wang,&nbsp;Lihua Li,&nbsp;Zhong Lü\",\"doi\":\"10.1088/1741-2552/acf7f7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.<i>Approach</i>. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.<i>Main result</i>. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.<i>Significance</i>. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.</p>\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/acf7f7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf7f7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

客观的脑网络研究已经成为研究脑卒中后大脑功能的一个有影响力的工具。然而,对与肌肉活动相关的皮层网络动力学的研究是有限的。这对于阐明卒中后运动控制系统中改变的协调模式至关重要。方法在本研究中,我们引入了时延最大信息谱系数(TDMISC)方法来评估功能性皮质-肌肉耦合(FCMC)的局部频带特征(α、β和γ频带)和皮质-皮质网络参数。我们使用单向耦合的Hénon映射模型和神经质量模型验证了TDMISC的有效性。主要结果。设计了一个具有25%最大自主收缩的抓握任务,仿真结果表明,TDMISC准确地表征了信号的局部频带和方向特性。在伽马波段,受影响一侧在上升方向上表现出明显较强的FCMC。然而,在β波段,受影响的一侧在所有方向上都表现出明显较弱的FCMC。对于皮质网络参数,在所有频带中,受影响侧的聚类系数均低于未受影响侧。此外,在所有频带中,受影响侧比未受影响侧表现出更长的最短路径长度。在所有频带中,中风组未受影响的运动皮层对受影响的活动皮层、顶叶联想区和体感皮层产生抑制作用。意义这些结果为运动功能障碍的神经机制提供了有意义的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of corticomuscular-cortical functional network based on time-delayed maximal information spectral coefficient.

Objective. The study of brain networks has become an influential tool for investigating post-stroke brain function. However, studies on the dynamics of cortical networks associated with muscle activity are limited. This is crucial for elucidating the altered coordination patterns in the post-stroke motor control system.Approach. In this study, we introduced the time-delayed maximal information spectral coefficient (TDMISC) method to assess the local frequency band characteristics (alpha, beta, and gamma bands) of functional corticomuscular coupling (FCMC) and cortico-cortical network parameters. We validated the effectiveness of TDMISC using a unidirectionally coupled Hénon maps model and a neural mass model.Main result. A grip task with 25% of maximum voluntary contraction was designed, and simulation results demonstrated that TDMISC accurately characterizes signals' local frequency band and directional properties. In the gamma band, the affected side showed significantly strong FCMC in the ascending direction. However, in the beta band, the affected side exhibited significantly weak FCMC in all directions. For the cortico-cortical network parameters, the affected side showed a lower clustering coefficient than the unaffected side in all frequency bands. Additionally, the affected side exhibited a longer shortest path length than the unaffected side in all frequency bands. In all frequency bands, the unaffected motor cortex in the stroke group exerted inhibitory effects on the affected motor cortex, the parietal associative areas, and the somatosensory cortices.Significance. These results provide meaningful insights into neural mechanisms underlying motor dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neural engineering
Journal of neural engineering 工程技术-工程:生物医学
CiteScore
7.80
自引率
12.50%
发文量
319
审稿时长
4.2 months
期刊介绍: The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels. The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信