递归神经网络的边际贝叶斯后验推理及其在序列模型中的应用。

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Thayer Fisher, Alex Luedtke, Marco Carone, Noah Simon
{"title":"递归神经网络的边际贝叶斯后验推理及其在序列模型中的应用。","authors":"Thayer Fisher,&nbsp;Alex Luedtke,&nbsp;Marco Carone,&nbsp;Noah Simon","doi":"10.5705/ss.202020.0348","DOIUrl":null,"url":null,"abstract":"<p><p>In Bayesian data analysis, it is often important to evaluate quantiles of the posterior distribution of a parameter of interest (e.g., to form posterior intervals). In multi-dimensional problems, when non-conjugate priors are used, this is often difficult generally requiring either an analytic or sampling-based approximation, such as Markov chain Monte-Carlo (MCMC), Approximate Bayesian computation (ABC) or variational inference. We discuss a general approach that reframes this as a multi-task learning problem and uses recurrent deep neural networks (RNNs) to approximately evaluate posterior quantiles. As RNNs carry information along a sequence, this application is particularly useful in time-series. An advantage of this risk-minimization approach is that we do not need to sample from the posterior or calculate the likelihood. We illustrate the proposed approach in several examples.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"33 SI","pages":"1507-1532"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321540/pdf/nihms-1807576.pdf","citationCount":"0","resultStr":"{\"title\":\"Marginal Bayesian Posterior Inference using Recurrent Neural Networks with Application to Sequential Models.\",\"authors\":\"Thayer Fisher,&nbsp;Alex Luedtke,&nbsp;Marco Carone,&nbsp;Noah Simon\",\"doi\":\"10.5705/ss.202020.0348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Bayesian data analysis, it is often important to evaluate quantiles of the posterior distribution of a parameter of interest (e.g., to form posterior intervals). In multi-dimensional problems, when non-conjugate priors are used, this is often difficult generally requiring either an analytic or sampling-based approximation, such as Markov chain Monte-Carlo (MCMC), Approximate Bayesian computation (ABC) or variational inference. We discuss a general approach that reframes this as a multi-task learning problem and uses recurrent deep neural networks (RNNs) to approximately evaluate posterior quantiles. As RNNs carry information along a sequence, this application is particularly useful in time-series. An advantage of this risk-minimization approach is that we do not need to sample from the posterior or calculate the likelihood. We illustrate the proposed approach in several examples.</p>\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"33 SI\",\"pages\":\"1507-1532\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321540/pdf/nihms-1807576.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0348\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在贝叶斯数据分析中,通常重要的是评估感兴趣参数的后验分布的分位数(例如,形成后验区间)。在多维问题中,当使用非共轭先验时,这通常是困难的,通常需要解析或基于抽样的近似,例如马尔可夫链蒙特卡罗(MCMC),近似贝叶斯计算(ABC)或变分推理。我们讨论了一种将其重新定义为多任务学习问题的一般方法,并使用循环深度神经网络(rnn)来近似评估后验分位数。由于rnn沿着序列携带信息,因此该应用程序在时间序列中特别有用。这种风险最小化方法的一个优点是我们不需要从后验中抽样或计算可能性。我们用几个例子来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marginal Bayesian Posterior Inference using Recurrent Neural Networks with Application to Sequential Models.

In Bayesian data analysis, it is often important to evaluate quantiles of the posterior distribution of a parameter of interest (e.g., to form posterior intervals). In multi-dimensional problems, when non-conjugate priors are used, this is often difficult generally requiring either an analytic or sampling-based approximation, such as Markov chain Monte-Carlo (MCMC), Approximate Bayesian computation (ABC) or variational inference. We discuss a general approach that reframes this as a multi-task learning problem and uses recurrent deep neural networks (RNNs) to approximately evaluate posterior quantiles. As RNNs carry information along a sequence, this application is particularly useful in time-series. An advantage of this risk-minimization approach is that we do not need to sample from the posterior or calculate the likelihood. We illustrate the proposed approach in several examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信