澳大利亚海葵新型TRPV1抑制肽Tst2的结构和功能特征

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Khaled A. Elnahriry , Dorothy C.C. Wai , Lauren M. Ashwood , Muhammad Umair Naseem , Tibor G. Szanto , Shaodong Guo , Gyorgy Panyi , Peter J. Prentis , Raymond S. Norton
{"title":"澳大利亚海葵新型TRPV1抑制肽Tst2的结构和功能特征","authors":"Khaled A. Elnahriry ,&nbsp;Dorothy C.C. Wai ,&nbsp;Lauren M. Ashwood ,&nbsp;Muhammad Umair Naseem ,&nbsp;Tibor G. Szanto ,&nbsp;Shaodong Guo ,&nbsp;Gyorgy Panyi ,&nbsp;Peter J. Prentis ,&nbsp;Raymond S. Norton","doi":"10.1016/j.bbapap.2023.140952","DOIUrl":null,"url":null,"abstract":"<div><p>Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone <em>Telmatactis stephensoni</em> identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (Na<sub>V</sub>, TRPV1, K<sub>V</sub> and Ca<sub>V</sub>). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in <em>Escherichia coli</em>, enabling the production of both unlabelled and uniformly <sup>13</sup>C,<sup>15</sup>N–labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch–clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (Na<sub>V</sub>) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against <em>Drosophila melanogaster</em> flies. However, the recombinant peptide at 100 nM showed &gt;50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni\",\"authors\":\"Khaled A. Elnahriry ,&nbsp;Dorothy C.C. Wai ,&nbsp;Lauren M. Ashwood ,&nbsp;Muhammad Umair Naseem ,&nbsp;Tibor G. Szanto ,&nbsp;Shaodong Guo ,&nbsp;Gyorgy Panyi ,&nbsp;Peter J. Prentis ,&nbsp;Raymond S. Norton\",\"doi\":\"10.1016/j.bbapap.2023.140952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone <em>Telmatactis stephensoni</em> identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (Na<sub>V</sub>, TRPV1, K<sub>V</sub> and Ca<sub>V</sub>). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in <em>Escherichia coli</em>, enabling the production of both unlabelled and uniformly <sup>13</sup>C,<sup>15</sup>N–labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch–clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (Na<sub>V</sub>) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against <em>Drosophila melanogaster</em> flies. However, the recombinant peptide at 100 nM showed &gt;50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963923000663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

海葵毒液是生物活性化合物的复杂混合物,包括富含二硫化物的肽,其中一些已被用作研究工具,另一些则作为治疗先导。我们最近对澳大利亚海葵(Telmatactis stephenoni)的转录组学和蛋白质组学研究发现了一个名为Tst2的肽转录本。Tst2是一种具有38个残基的肽,其序列与已知与一系列离子通道(NaV、TRPV1、KV和CaV)相互作用的肽毒素相似。重组Tst2 (rTst2,在n端含有一个额外的Gly)在大肠杆菌中通过质周表达产生,能够生产未标记的和统一的13C, 15n标记的肽,用于功能分析和结构研究。重组Tst2的LC-MS谱显示出一个纯峰,其分子质量小于还原形式的6 Da,表明其6个半胱氨酸残基成功形成了3个二硫键。利用多维核磁共振光谱测定了rTst2的溶液结构,发现rTst2采用抑制剂胱氨酸结(ICK)结构。rTst2通过各种功能测试筛选,包括膜片钳电生理和细胞毒性测试。rTst2对电压门控钠离子通道(NaV)和人电压门控质子通道(hHv1)无活性。当对黑腹果蝇进行评估时,rTst2也不具有细胞毒活性。然而,重组肽在100 nM处显示对瞬时受体电位亚家族V成员1 (TRPV1)有50%的抑制作用,对瞬时受体电位亚家族A成员1 (TRPA1)有轻微(~ 10%)的抑制作用。因此,Tst2是TRPV1通道的一种新型ICK抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni

Structural and functional characterisation of Tst2, a novel TRPV1 inhibitory peptide from the Australian sea anemone Telmatactis stephensoni

Sea anemone venoms are complex mixtures of biologically active compounds, including disulfide-rich peptides, some of which have found applications as research tools, and others as therapeutic leads. Our recent transcriptomic and proteomic studies of the Australian sea anemone Telmatactis stephensoni identified a transcript for a peptide designated Tst2. Tst2 is a 38-residue peptide showing sequence similarity to peptide toxins known to interact with a range of ion channels (NaV, TRPV1, KV and CaV). Recombinant Tst2 (rTst2, which contains an additional Gly at the N-terminus) was produced by periplasmic expression in Escherichia coli, enabling the production of both unlabelled and uniformly 13C,15N–labelled peptide for functional assays and structural studies. The LC-MS profile of the recombinant Tst2 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds from its six cysteine residues. The solution structure of rTst2 was determined using multidimensional NMR spectroscopy and revealed that rTst2 adopts an inhibitor cystine knot (ICK) structure. rTst2 was screened using various functional assays, including patch–clamp electrophysiological and cytotoxicity assays. rTst2 was inactive against voltage-gated sodium channels (NaV) and the human voltage-gated proton (hHv1) channel. rTst2 also did not possess cytotoxic activity when assessed against Drosophila melanogaster flies. However, the recombinant peptide at 100 nM showed >50% inhibition of the transient receptor potential subfamily V member 1 (TRPV1) and slight (∼10%) inhibition of transient receptor potential subfamily A member 1 (TRPA1). Tst2 is thus a novel ICK inhibitor of the TRPV1 channel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信