综合结构建模中的贝叶斯方法。

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biological Chemistry Pub Date : 2023-07-31 Print Date: 2023-07-26 DOI:10.1515/hsz-2023-0145
Michael Habeck
{"title":"综合结构建模中的贝叶斯方法。","authors":"Michael Habeck","doi":"10.1515/hsz-2023-0145","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing interest in characterizing the structure and dynamics of large biomolecular assemblies and their interactions within the cellular environment. A diverse array of experimental techniques allows us to study biomolecular systems on a variety of length and time scales. These techniques range from imaging with light, X-rays or electrons, to spectroscopic methods, cross-linking mass spectrometry and functional genomics approaches, and are complemented by AI-assisted protein structure prediction methods. A challenge is to integrate all of these data into a model of the system and its functional dynamics. This review focuses on Bayesian approaches to integrative structure modeling. We sketch the principles of Bayesian inference, highlight recent applications to integrative modeling and conclude with a discussion of current challenges and future perspectives.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":"404 8-9","pages":"741-754"},"PeriodicalIF":2.9000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian methods in integrative structure modeling.\",\"authors\":\"Michael Habeck\",\"doi\":\"10.1515/hsz-2023-0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a growing interest in characterizing the structure and dynamics of large biomolecular assemblies and their interactions within the cellular environment. A diverse array of experimental techniques allows us to study biomolecular systems on a variety of length and time scales. These techniques range from imaging with light, X-rays or electrons, to spectroscopic methods, cross-linking mass spectrometry and functional genomics approaches, and are complemented by AI-assisted protein structure prediction methods. A challenge is to integrate all of these data into a model of the system and its functional dynamics. This review focuses on Bayesian approaches to integrative structure modeling. We sketch the principles of Bayesian inference, highlight recent applications to integrative modeling and conclude with a discussion of current challenges and future perspectives.</p>\",\"PeriodicalId\":8885,\"journal\":{\"name\":\"Biological Chemistry\",\"volume\":\"404 8-9\",\"pages\":\"741-754\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/hsz-2023-0145\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0145","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/26 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

人们对表征大型生物分子组装体的结构和动力学及其在细胞环境中的相互作用越来越感兴趣。一系列不同的实验技术使我们能够在不同的长度和时间尺度上研究生物分子系统。这些技术从光、X射线或电子成像到光谱方法、交联质谱和功能基因组学方法,并辅以人工智能辅助的蛋白质结构预测方法。一个挑战是将所有这些数据集成到系统及其功能动力学的模型中。这篇综述的重点是贝叶斯方法的综合结构建模。我们概述了贝叶斯推理的原理,重点介绍了最近在综合建模中的应用,并讨论了当前的挑战和未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian methods in integrative structure modeling.

There is a growing interest in characterizing the structure and dynamics of large biomolecular assemblies and their interactions within the cellular environment. A diverse array of experimental techniques allows us to study biomolecular systems on a variety of length and time scales. These techniques range from imaging with light, X-rays or electrons, to spectroscopic methods, cross-linking mass spectrometry and functional genomics approaches, and are complemented by AI-assisted protein structure prediction methods. A challenge is to integrate all of these data into a model of the system and its functional dynamics. This review focuses on Bayesian approaches to integrative structure modeling. We sketch the principles of Bayesian inference, highlight recent applications to integrative modeling and conclude with a discussion of current challenges and future perspectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信