{"title":"CCN-Hippo YAP信号在视觉中的作用及其在神经元、胶质和血管细胞功能和行为中的作用","authors":"Brahim Chaqour","doi":"10.1007/s12079-023-00759-6","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN–Hippo–YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases.</p>\n </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 2","pages":"255-262"},"PeriodicalIF":3.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326198/pdf/12079_2023_Article_759.pdf","citationCount":"1","resultStr":"{\"title\":\"CCN–Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior\",\"authors\":\"Brahim Chaqour\",\"doi\":\"10.1007/s12079-023-00759-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN–Hippo–YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases.</p>\\n </div>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"17 2\",\"pages\":\"255-262\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326198/pdf/12079_2023_Article_759.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1007/s12079-023-00759-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1007/s12079-023-00759-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CCN–Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior
The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN–Hippo–YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.