Elisa Warner, Najla Al-Turkestani, Jonas Bianchi, Marcela Lima Gurgel, Lucia Cevidanes, Arvind Rao
{"title":"基于特权信息的随机森林预测颞下颌关节骨关节炎。","authors":"Elisa Warner, Najla Al-Turkestani, Jonas Bianchi, Marcela Lima Gurgel, Lucia Cevidanes, Arvind Rao","doi":"10.1007/978-3-031-23223-7_7","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis of the temporomandibular joint (TMJ OA) is the most common disorder of the TMJ. A clinical decision support (CDS) system designed to detect TMJ OA could function as a useful screening tool as part of regular check-ups to detect early onset. This study implements a CDS concept model based on Random Forest and dubbed RF<sup>+</sup> to predict TMJ OA with the hypothesis that a model which leverages high-resolution radiological and biomarker data in training only can improve predictions compared with a baseline model which does not use privileged information. We found that the RF<sup>+</sup> model can outperform the baseline model even when privileged features are not of gold standard quality. Additionally, we introduce a novel method for post-hoc feature analysis, finding shortRunHighGreyLevelEmphasis of the lateral condyles and joint distance to be the most important features from the privileged modalities for predicting TMJ OA.</p>","PeriodicalId":72953,"journal":{"name":"Ethical and philosophical issues in medical imaging, multimodal learning and fusion across scales for clinical decision support, and topological data analysis for biomedical imaging : 1st International Workshop, EPIMI 2022, 12th Interna...","volume":"13755 ","pages":"77-86"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323493/pdf/nihms-1908708.pdf","citationCount":"1","resultStr":"{\"title\":\"Predicting Osteoarthritis of the Temporomandibular Joint Using Random Forest with Privileged Information.\",\"authors\":\"Elisa Warner, Najla Al-Turkestani, Jonas Bianchi, Marcela Lima Gurgel, Lucia Cevidanes, Arvind Rao\",\"doi\":\"10.1007/978-3-031-23223-7_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis of the temporomandibular joint (TMJ OA) is the most common disorder of the TMJ. A clinical decision support (CDS) system designed to detect TMJ OA could function as a useful screening tool as part of regular check-ups to detect early onset. This study implements a CDS concept model based on Random Forest and dubbed RF<sup>+</sup> to predict TMJ OA with the hypothesis that a model which leverages high-resolution radiological and biomarker data in training only can improve predictions compared with a baseline model which does not use privileged information. We found that the RF<sup>+</sup> model can outperform the baseline model even when privileged features are not of gold standard quality. Additionally, we introduce a novel method for post-hoc feature analysis, finding shortRunHighGreyLevelEmphasis of the lateral condyles and joint distance to be the most important features from the privileged modalities for predicting TMJ OA.</p>\",\"PeriodicalId\":72953,\"journal\":{\"name\":\"Ethical and philosophical issues in medical imaging, multimodal learning and fusion across scales for clinical decision support, and topological data analysis for biomedical imaging : 1st International Workshop, EPIMI 2022, 12th Interna...\",\"volume\":\"13755 \",\"pages\":\"77-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323493/pdf/nihms-1908708.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ethical and philosophical issues in medical imaging, multimodal learning and fusion across scales for clinical decision support, and topological data analysis for biomedical imaging : 1st International Workshop, EPIMI 2022, 12th Interna...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-23223-7_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ethical and philosophical issues in medical imaging, multimodal learning and fusion across scales for clinical decision support, and topological data analysis for biomedical imaging : 1st International Workshop, EPIMI 2022, 12th Interna...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-23223-7_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Osteoarthritis of the Temporomandibular Joint Using Random Forest with Privileged Information.
Osteoarthritis of the temporomandibular joint (TMJ OA) is the most common disorder of the TMJ. A clinical decision support (CDS) system designed to detect TMJ OA could function as a useful screening tool as part of regular check-ups to detect early onset. This study implements a CDS concept model based on Random Forest and dubbed RF+ to predict TMJ OA with the hypothesis that a model which leverages high-resolution radiological and biomarker data in training only can improve predictions compared with a baseline model which does not use privileged information. We found that the RF+ model can outperform the baseline model even when privileged features are not of gold standard quality. Additionally, we introduce a novel method for post-hoc feature analysis, finding shortRunHighGreyLevelEmphasis of the lateral condyles and joint distance to be the most important features from the privileged modalities for predicting TMJ OA.