M Viljanen, J Minnema, P N H Wassenaar, E Rorije, W Peijnenburg
{"title":"给定化学物质对给定水生物种的生态毒性是多少?使用推荐系统技术预测物种和化学品之间的相互作用。","authors":"M Viljanen, J Minnema, P N H Wassenaar, E Rorije, W Peijnenburg","doi":"10.1080/1062936X.2023.2254225","DOIUrl":null,"url":null,"abstract":"<p><p>Ecotoxicological safety assessment of chemicals requires toxicity data on multiple species, despite the general desire of minimizing animal testing. Predictive models, specifically machine learning (ML) methods, are one of the tools capable of solving this apparent contradiction as they allow to generalize toxicity patterns across chemicals and species. However, despite the availability of large public toxicity datasets, the data is highly sparse, complicating model development. The aim of this study is to provide insights into how ML can predict toxicity using a large but sparse dataset. We developed models to predict LC50-values, based on experimental LC50-data covering 2431 organic chemicals and 1506 aquatic species from the ECOTOX-database. Several well-known ML techniques were evaluated and a new ML model was developed, inspired by recommender systems. This new model involves a simple linear model that learns low-rank interactions between species and chemicals using factorization machines. We evaluated the predictive performances of the developed models based on two validation settings: 1) predicting unseen chemical-species pairs, and 2) predicting unseen chemicals. The results of this study show that ML models can accurately predict LC50-values in both validation settings. Moreover, we show that the novel factorization machine approach can match well-tuned, complex, ML approaches.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"765-788"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is the ecotoxicity of a given chemical for a given aquatic species? Predicting interactions between species and chemicals using recommender system techniques.\",\"authors\":\"M Viljanen, J Minnema, P N H Wassenaar, E Rorije, W Peijnenburg\",\"doi\":\"10.1080/1062936X.2023.2254225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ecotoxicological safety assessment of chemicals requires toxicity data on multiple species, despite the general desire of minimizing animal testing. Predictive models, specifically machine learning (ML) methods, are one of the tools capable of solving this apparent contradiction as they allow to generalize toxicity patterns across chemicals and species. However, despite the availability of large public toxicity datasets, the data is highly sparse, complicating model development. The aim of this study is to provide insights into how ML can predict toxicity using a large but sparse dataset. We developed models to predict LC50-values, based on experimental LC50-data covering 2431 organic chemicals and 1506 aquatic species from the ECOTOX-database. Several well-known ML techniques were evaluated and a new ML model was developed, inspired by recommender systems. This new model involves a simple linear model that learns low-rank interactions between species and chemicals using factorization machines. We evaluated the predictive performances of the developed models based on two validation settings: 1) predicting unseen chemical-species pairs, and 2) predicting unseen chemicals. The results of this study show that ML models can accurately predict LC50-values in both validation settings. Moreover, we show that the novel factorization machine approach can match well-tuned, complex, ML approaches.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"765-788\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2023.2254225\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2254225","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
What is the ecotoxicity of a given chemical for a given aquatic species? Predicting interactions between species and chemicals using recommender system techniques.
Ecotoxicological safety assessment of chemicals requires toxicity data on multiple species, despite the general desire of minimizing animal testing. Predictive models, specifically machine learning (ML) methods, are one of the tools capable of solving this apparent contradiction as they allow to generalize toxicity patterns across chemicals and species. However, despite the availability of large public toxicity datasets, the data is highly sparse, complicating model development. The aim of this study is to provide insights into how ML can predict toxicity using a large but sparse dataset. We developed models to predict LC50-values, based on experimental LC50-data covering 2431 organic chemicals and 1506 aquatic species from the ECOTOX-database. Several well-known ML techniques were evaluated and a new ML model was developed, inspired by recommender systems. This new model involves a simple linear model that learns low-rank interactions between species and chemicals using factorization machines. We evaluated the predictive performances of the developed models based on two validation settings: 1) predicting unseen chemical-species pairs, and 2) predicting unseen chemicals. The results of this study show that ML models can accurately predict LC50-values in both validation settings. Moreover, we show that the novel factorization machine approach can match well-tuned, complex, ML approaches.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.