Kannan Sridharan, Mwila Mulubwa, Ali Mohamed Qader
{"title":"重症成人静脉输注对乙酰氨基酚及其代谢物的人群药代动力学建模和剂量优化。","authors":"Kannan Sridharan, Mwila Mulubwa, Ali Mohamed Qader","doi":"10.1007/s13318-023-00841-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Acetaminophen (paracetamol) is a ubiquitously administered drug in critically ill patients. Considering the dearth of literature, we evaluated the population pharmacokinetics of intravenous acetaminophen and its principal metabolites (sulfate and glucuronide) in this population.</p><p><strong>Methods: </strong>Critically ill adults receiving intravenous acetaminophen were included in the study. One to three blood samples were withdrawn per patient for the estimation of acetaminophen, and its metabolites (acetaminophen glucuronide and acetaminophen sulfate). High-performance liquid chromatography was used for measuring serum concentrations. We used nonlinear mixed-effect modeling for estimating the primary pharmacokinetic parameters of acetaminophen and its metabolites. The effect of covariates was evaluated followed by dose optimization using Monte Carlo simulation. Patient factors such as demographic information, liver and renal function tests were used as covariates in population pharmacokinetic analysis. The therapeutic range for serum acetaminophen concentration was considered to be 66-132 μM, while 990 μM was considered as the threshold for toxic concentration.</p><p><strong>Results: </strong>Eighty-seven participants were recruited. A joint two-compartment acetaminophen pharmacokinetic model linked to glucuronide and sulfate metabolite compartments was used. The central and peripheral volume distributions were 7.87 and 8.87 L/70 kg, respectively. Estimated clearance (CL) was 0.58 L/h/70 kg, while intercompartmental clearance was 44.2 L/h/70 kg. The glucuronide and sulfate metabolite CL were 22 and 94.7 L/h/70 kg, respectively. Monte Carlo simulation showed that twice-daily administration of acetaminophen would result in a relatively higher proportion of patient population achieving and retaining serum concentrations in the therapeutic range, with reduced risk of concentrations remaining in the toxic range.</p><p><strong>Conclusion: </strong>A joint pharmacokinetic model for intravenous acetaminophen and its principal metabolites in a critically ill patient population has been developed. Acetaminophen CL in this patient population is reduced. We propose a reduction in the frequency of administration to reduce the risk of supra-therapeutic concentrations in this population.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":"48 5","pages":"531-540"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population Pharmacokinetic Modeling and Dose Optimization of Acetaminophen and its Metabolites Following Intravenous Infusion in Critically ill Adults.\",\"authors\":\"Kannan Sridharan, Mwila Mulubwa, Ali Mohamed Qader\",\"doi\":\"10.1007/s13318-023-00841-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Acetaminophen (paracetamol) is a ubiquitously administered drug in critically ill patients. Considering the dearth of literature, we evaluated the population pharmacokinetics of intravenous acetaminophen and its principal metabolites (sulfate and glucuronide) in this population.</p><p><strong>Methods: </strong>Critically ill adults receiving intravenous acetaminophen were included in the study. One to three blood samples were withdrawn per patient for the estimation of acetaminophen, and its metabolites (acetaminophen glucuronide and acetaminophen sulfate). High-performance liquid chromatography was used for measuring serum concentrations. We used nonlinear mixed-effect modeling for estimating the primary pharmacokinetic parameters of acetaminophen and its metabolites. The effect of covariates was evaluated followed by dose optimization using Monte Carlo simulation. Patient factors such as demographic information, liver and renal function tests were used as covariates in population pharmacokinetic analysis. The therapeutic range for serum acetaminophen concentration was considered to be 66-132 μM, while 990 μM was considered as the threshold for toxic concentration.</p><p><strong>Results: </strong>Eighty-seven participants were recruited. A joint two-compartment acetaminophen pharmacokinetic model linked to glucuronide and sulfate metabolite compartments was used. The central and peripheral volume distributions were 7.87 and 8.87 L/70 kg, respectively. Estimated clearance (CL) was 0.58 L/h/70 kg, while intercompartmental clearance was 44.2 L/h/70 kg. The glucuronide and sulfate metabolite CL were 22 and 94.7 L/h/70 kg, respectively. Monte Carlo simulation showed that twice-daily administration of acetaminophen would result in a relatively higher proportion of patient population achieving and retaining serum concentrations in the therapeutic range, with reduced risk of concentrations remaining in the toxic range.</p><p><strong>Conclusion: </strong>A joint pharmacokinetic model for intravenous acetaminophen and its principal metabolites in a critically ill patient population has been developed. Acetaminophen CL in this patient population is reduced. We propose a reduction in the frequency of administration to reduce the risk of supra-therapeutic concentrations in this population.</p>\",\"PeriodicalId\":11939,\"journal\":{\"name\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"volume\":\"48 5\",\"pages\":\"531-540\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13318-023-00841-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-023-00841-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Population Pharmacokinetic Modeling and Dose Optimization of Acetaminophen and its Metabolites Following Intravenous Infusion in Critically ill Adults.
Background and objective: Acetaminophen (paracetamol) is a ubiquitously administered drug in critically ill patients. Considering the dearth of literature, we evaluated the population pharmacokinetics of intravenous acetaminophen and its principal metabolites (sulfate and glucuronide) in this population.
Methods: Critically ill adults receiving intravenous acetaminophen were included in the study. One to three blood samples were withdrawn per patient for the estimation of acetaminophen, and its metabolites (acetaminophen glucuronide and acetaminophen sulfate). High-performance liquid chromatography was used for measuring serum concentrations. We used nonlinear mixed-effect modeling for estimating the primary pharmacokinetic parameters of acetaminophen and its metabolites. The effect of covariates was evaluated followed by dose optimization using Monte Carlo simulation. Patient factors such as demographic information, liver and renal function tests were used as covariates in population pharmacokinetic analysis. The therapeutic range for serum acetaminophen concentration was considered to be 66-132 μM, while 990 μM was considered as the threshold for toxic concentration.
Results: Eighty-seven participants were recruited. A joint two-compartment acetaminophen pharmacokinetic model linked to glucuronide and sulfate metabolite compartments was used. The central and peripheral volume distributions were 7.87 and 8.87 L/70 kg, respectively. Estimated clearance (CL) was 0.58 L/h/70 kg, while intercompartmental clearance was 44.2 L/h/70 kg. The glucuronide and sulfate metabolite CL were 22 and 94.7 L/h/70 kg, respectively. Monte Carlo simulation showed that twice-daily administration of acetaminophen would result in a relatively higher proportion of patient population achieving and retaining serum concentrations in the therapeutic range, with reduced risk of concentrations remaining in the toxic range.
Conclusion: A joint pharmacokinetic model for intravenous acetaminophen and its principal metabolites in a critically ill patient population has been developed. Acetaminophen CL in this patient population is reduced. We propose a reduction in the frequency of administration to reduce the risk of supra-therapeutic concentrations in this population.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.