GWAS汇总数据中无效工具变量的因果代谢物网络推断。

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY
Siyi Chen, Zhaotong Lin, Xiaotong Shen, Ling Li, Wei Pan
{"title":"GWAS汇总数据中无效工具变量的因果代谢物网络推断。","authors":"Siyi Chen,&nbsp;Zhaotong Lin,&nbsp;Xiaotong Shen,&nbsp;Ling Li,&nbsp;Wei Pan","doi":"10.1002/gepi.22535","DOIUrl":null,"url":null,"abstract":"<p>We propose structural equation models (SEMs) as a general framework to infer causal networks for metabolites and other complex traits. Traditionally SEMs are used only for individual-level data under the assumption that all instrumental variables (IVs) are valid. To overcome these limitations, we propose both one- and two-sample approaches for causal network inference based on SEMs that can: (1) perform causal analysis and discover causal relationships among multiple traits; (2) account for the possible presence of some invalid IVs; (3) allow for data analysis using only genome-wide association studies (GWAS) summary statistics when individual-level data are not available; (4) consider the possibility of bidirectional relationships between traits. Our method employs a simple stepwise selection to identify invalid IVs, thus avoiding false positives while possibly increasing true discoveries based on two-stage least squares (2SLS). We use both real GWAS data and simulated data to demonstrate the superior performance of our method over the standard 2SLS/SEMs. For real data analysis, our proposed approach is applied to a human blood metabolite GWAS summary data set to uncover putative causal relationships among the metabolites; we also identify some metabolites (putative) causal to Alzheimer's disease (AD), which, along with the inferred causal metabolite network, suggest some possible pathways of metabolites involved in AD.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 8","pages":"585-599"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22535","citationCount":"0","resultStr":"{\"title\":\"Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data\",\"authors\":\"Siyi Chen,&nbsp;Zhaotong Lin,&nbsp;Xiaotong Shen,&nbsp;Ling Li,&nbsp;Wei Pan\",\"doi\":\"10.1002/gepi.22535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose structural equation models (SEMs) as a general framework to infer causal networks for metabolites and other complex traits. Traditionally SEMs are used only for individual-level data under the assumption that all instrumental variables (IVs) are valid. To overcome these limitations, we propose both one- and two-sample approaches for causal network inference based on SEMs that can: (1) perform causal analysis and discover causal relationships among multiple traits; (2) account for the possible presence of some invalid IVs; (3) allow for data analysis using only genome-wide association studies (GWAS) summary statistics when individual-level data are not available; (4) consider the possibility of bidirectional relationships between traits. Our method employs a simple stepwise selection to identify invalid IVs, thus avoiding false positives while possibly increasing true discoveries based on two-stage least squares (2SLS). We use both real GWAS data and simulated data to demonstrate the superior performance of our method over the standard 2SLS/SEMs. For real data analysis, our proposed approach is applied to a human blood metabolite GWAS summary data set to uncover putative causal relationships among the metabolites; we also identify some metabolites (putative) causal to Alzheimer's disease (AD), which, along with the inferred causal metabolite network, suggest some possible pathways of metabolites involved in AD.</p>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"47 8\",\"pages\":\"585-599\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22535\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22535\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出结构方程模型(sem)作为一般框架来推断代谢物和其他复杂性状的因果网络。传统上,sem仅在假设所有工具变量(IVs)都有效的情况下用于个人层面的数据。为了克服这些限制,我们提出了基于SEMs的单样本和双样本因果网络推理方法,它们可以:(1)进行因果分析并发现多个特征之间的因果关系;(2)考虑到可能存在的一些无效的IVs;(3)在没有个人水平数据时,允许仅使用全基因组关联研究(GWAS)汇总统计数据进行数据分析;(4)考虑性状之间存在双向关系的可能性。我们的方法采用简单的逐步选择来识别无效的IVs,从而避免假阳性,同时可能增加基于两阶段最小二乘法(2SLS)的真实发现。我们使用真实的GWAS数据和模拟数据来证明我们的方法优于标准的2SLS/ sem。对于真实的数据分析,我们提出的方法应用于人类血液代谢物GWAS汇总数据集,以揭示代谢物之间假定的因果关系;我们还发现了一些(假定的)导致阿尔茨海默病(AD)的代谢物,这些代谢物与推断的因果代谢物网络一起,提示了一些可能参与AD的代谢物途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data

Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data

We propose structural equation models (SEMs) as a general framework to infer causal networks for metabolites and other complex traits. Traditionally SEMs are used only for individual-level data under the assumption that all instrumental variables (IVs) are valid. To overcome these limitations, we propose both one- and two-sample approaches for causal network inference based on SEMs that can: (1) perform causal analysis and discover causal relationships among multiple traits; (2) account for the possible presence of some invalid IVs; (3) allow for data analysis using only genome-wide association studies (GWAS) summary statistics when individual-level data are not available; (4) consider the possibility of bidirectional relationships between traits. Our method employs a simple stepwise selection to identify invalid IVs, thus avoiding false positives while possibly increasing true discoveries based on two-stage least squares (2SLS). We use both real GWAS data and simulated data to demonstrate the superior performance of our method over the standard 2SLS/SEMs. For real data analysis, our proposed approach is applied to a human blood metabolite GWAS summary data set to uncover putative causal relationships among the metabolites; we also identify some metabolites (putative) causal to Alzheimer's disease (AD), which, along with the inferred causal metabolite network, suggest some possible pathways of metabolites involved in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信