诱导玉米幼苗防御相关基因的挥发性化合物的结构-活性关系

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Signaling & Behavior Pub Date : 2023-12-31 Epub Date: 2023-07-16 DOI:10.1080/15592324.2023.2234115
Yasuhiro Tanaka, Kenya Fujita, Minori Date, Bunta Watanabe, Kenji Matsui
{"title":"诱导玉米幼苗防御相关基因的挥发性化合物的结构-活性关系","authors":"Yasuhiro Tanaka, Kenya Fujita, Minori Date, Bunta Watanabe, Kenji Matsui","doi":"10.1080/15592324.2023.2234115","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile organic compounds mediate plant-to-plant communication, and plants receiving volatile cues can acquire greater defenses against attackers. It has been expected that volatiles are received by factors that eventually lead to the induction of defense-related gene expression; however, the nature of these factors remain unclear. Structure-activity relationship analysis of gene expression induction by volatiles should provide insights into the nature of these factors. We conducted a structure-activity relationship study using maize seedlings and (<i>Z</i>)-3-hexen-1-yl acetate (Z3HAC) as the lead compound. The acid portion of Z3HAC was not essential, and (<i>Z</i>)-3-hexen-1-ol (Z3HOL), which is formed after the hydrolysis of Z3HAC, is likely the structure essential for the upregulation of the genes. The double bond of Z3HOL is essential; however, its geometry is indistinguishable. Strict specificity was detected regarding the length of the methylene chain on the α- and ω-sides of the double bond, and therefore, the 3-hexen-1-ol structure was found to be the ultimate structure. This finding provides insight into the nature of the factors that interact with a volatile compound and subsequently activate signaling pathways, leading to the upregulation of a subset of defense genes.</p>","PeriodicalId":20232,"journal":{"name":"Plant Signaling & Behavior","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structure-activity relationship of volatile compounds that induce defense-related genes in maize seedlings.\",\"authors\":\"Yasuhiro Tanaka, Kenya Fujita, Minori Date, Bunta Watanabe, Kenji Matsui\",\"doi\":\"10.1080/15592324.2023.2234115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volatile organic compounds mediate plant-to-plant communication, and plants receiving volatile cues can acquire greater defenses against attackers. It has been expected that volatiles are received by factors that eventually lead to the induction of defense-related gene expression; however, the nature of these factors remain unclear. Structure-activity relationship analysis of gene expression induction by volatiles should provide insights into the nature of these factors. We conducted a structure-activity relationship study using maize seedlings and (<i>Z</i>)-3-hexen-1-yl acetate (Z3HAC) as the lead compound. The acid portion of Z3HAC was not essential, and (<i>Z</i>)-3-hexen-1-ol (Z3HOL), which is formed after the hydrolysis of Z3HAC, is likely the structure essential for the upregulation of the genes. The double bond of Z3HOL is essential; however, its geometry is indistinguishable. Strict specificity was detected regarding the length of the methylene chain on the α- and ω-sides of the double bond, and therefore, the 3-hexen-1-ol structure was found to be the ultimate structure. This finding provides insight into the nature of the factors that interact with a volatile compound and subsequently activate signaling pathways, leading to the upregulation of a subset of defense genes.</p>\",\"PeriodicalId\":20232,\"journal\":{\"name\":\"Plant Signaling & Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Signaling & Behavior\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2023.2234115\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Signaling & Behavior","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2023.2234115","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

挥发性有机化合物是植物与植物之间交流的媒介,接收到挥发性线索的植物可以增强对攻击者的防御能力。人们预计,挥发性物质会被一些因子接收,最终导致诱导与防御相关的基因表达;然而,这些因子的性质仍不清楚。通过对挥发性物质诱导基因表达的结构-活性关系分析,可以深入了解这些因素的性质。我们以玉米幼苗和 (Z)-3-hexen-1-yl acetate(Z3HAC)为先导化合物进行了结构-活性关系研究。Z3HAC的酸性部分不是必需的,Z3HAC水解后形成的(Z)-3-己烯-1-醇(Z3HOL)可能是基因上调所必需的结构。Z3HOL 的双键是必不可少的,但其几何结构却无法区分。双键的 α 和 ω 侧亚甲基链的长度具有严格的特异性,因此,3-己烯-1-醇结构被认为是最终结构。这一发现使人们深入了解了与挥发性化合物相互作用并随后激活信号通路的因子的性质,从而导致防御基因子集的上调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure-activity relationship of volatile compounds that induce defense-related genes in maize seedlings.

Volatile organic compounds mediate plant-to-plant communication, and plants receiving volatile cues can acquire greater defenses against attackers. It has been expected that volatiles are received by factors that eventually lead to the induction of defense-related gene expression; however, the nature of these factors remain unclear. Structure-activity relationship analysis of gene expression induction by volatiles should provide insights into the nature of these factors. We conducted a structure-activity relationship study using maize seedlings and (Z)-3-hexen-1-yl acetate (Z3HAC) as the lead compound. The acid portion of Z3HAC was not essential, and (Z)-3-hexen-1-ol (Z3HOL), which is formed after the hydrolysis of Z3HAC, is likely the structure essential for the upregulation of the genes. The double bond of Z3HOL is essential; however, its geometry is indistinguishable. Strict specificity was detected regarding the length of the methylene chain on the α- and ω-sides of the double bond, and therefore, the 3-hexen-1-ol structure was found to be the ultimate structure. This finding provides insight into the nature of the factors that interact with a volatile compound and subsequently activate signaling pathways, leading to the upregulation of a subset of defense genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Signaling & Behavior
Plant Signaling & Behavior Agricultural and Biological Sciences-Plant Science
CiteScore
6.00
自引率
3.40%
发文量
111
期刊介绍: Plant Signaling & Behavior, a multidisciplinary peer-reviewed journal published monthly online, publishes original research articles and reviews covering the latest aspects of signal perception and transduction, integrative plant physiology, and information acquisition and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信