连接蛋白43缝隙连接影响多发性骨髓瘤侧群体细胞的生存和耐药。

IF 2 4区 医学 Q3 PHYSIOLOGY
Z Wang, J X Fu, X H Zhang, Y Sun, X P Ge
{"title":"连接蛋白43缝隙连接影响多发性骨髓瘤侧群体细胞的生存和耐药。","authors":"Z Wang,&nbsp;J X Fu,&nbsp;X H Zhang,&nbsp;Y Sun,&nbsp;X P Ge","doi":"10.26402/jpp.2023.3.10","DOIUrl":null,"url":null,"abstract":"<p><p>Drug resistance remains a major challenge for multiple myeloma (MM) treatment, and side population (SP) cells may play a key role in this resistance. The function of connexin 43 (Cx43)-mediated gap junction intercellular communication (GJ-IC) in MM cells is poorly understood. Bone marrow mesenchymal stem cells (BMSCs) from different sources were isolated and cultured. SP cells of MM cell line RPMI 8266 were separated by flow cytometry. Real-time reverse transcriptase-polymerase chain reaction and Western blot were used to detect Cx43 mRNA and protein expression in BMSCs, RPMI 8266 and SP cells from different sources. The effects of BMSCs from different sources on SP cell cycle, in vitro colony formation ability, stem cell-related gene expression and drug resistance, and the addition of 18α glycyrrhetinic acid (18αGA) as a pathway inhibitor were observed. Here, we demonstrate that MM cells expressed Cx43 and contained a high percentage of SP cells. We observed an increase in the survival and proliferative capacity of SP cells compared with RPMI 8226 cells, but treatment with 18αGA decreased SP cell survival and proliferation (all P<0.05). MM cells were sensitive to dexamethasone- and bortezomib-induced apoptosis; however, this sensitivity was significantly decreased when MM cells were co-cultured with BMSCs, and 18αGA partly recovered this cytotoxicity (all P<0.05). Collectively, our data suggest that GJ-IC between BMSCs and MM cells is one of the important regulatory mechanisms underlying MM cells survival, proliferation, and drug sensitivity.</p>","PeriodicalId":50089,"journal":{"name":"Journal of Physiology and Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connexin 43 gap junction affects survival and drug resistance of multiple myeloma side population cells.\",\"authors\":\"Z Wang,&nbsp;J X Fu,&nbsp;X H Zhang,&nbsp;Y Sun,&nbsp;X P Ge\",\"doi\":\"10.26402/jpp.2023.3.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug resistance remains a major challenge for multiple myeloma (MM) treatment, and side population (SP) cells may play a key role in this resistance. The function of connexin 43 (Cx43)-mediated gap junction intercellular communication (GJ-IC) in MM cells is poorly understood. Bone marrow mesenchymal stem cells (BMSCs) from different sources were isolated and cultured. SP cells of MM cell line RPMI 8266 were separated by flow cytometry. Real-time reverse transcriptase-polymerase chain reaction and Western blot were used to detect Cx43 mRNA and protein expression in BMSCs, RPMI 8266 and SP cells from different sources. The effects of BMSCs from different sources on SP cell cycle, in vitro colony formation ability, stem cell-related gene expression and drug resistance, and the addition of 18α glycyrrhetinic acid (18αGA) as a pathway inhibitor were observed. Here, we demonstrate that MM cells expressed Cx43 and contained a high percentage of SP cells. We observed an increase in the survival and proliferative capacity of SP cells compared with RPMI 8226 cells, but treatment with 18αGA decreased SP cell survival and proliferation (all P<0.05). MM cells were sensitive to dexamethasone- and bortezomib-induced apoptosis; however, this sensitivity was significantly decreased when MM cells were co-cultured with BMSCs, and 18αGA partly recovered this cytotoxicity (all P<0.05). Collectively, our data suggest that GJ-IC between BMSCs and MM cells is one of the important regulatory mechanisms underlying MM cells survival, proliferation, and drug sensitivity.</p>\",\"PeriodicalId\":50089,\"journal\":{\"name\":\"Journal of Physiology and Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26402/jpp.2023.3.10\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26402/jpp.2023.3.10","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐药仍然是多发性骨髓瘤(MM)治疗的主要挑战,而侧群(SP)细胞可能在这种耐药中起关键作用。连接蛋白43 (Cx43)介导的间隙连接细胞间通讯(GJ-IC)在MM细胞中的功能尚不清楚。从不同来源分离培养骨髓间充质干细胞(BMSCs)。用流式细胞术分离MM细胞株RPMI 8266的SP细胞。采用实时逆转录聚合酶链反应和Western blot检测不同来源的BMSCs、RPMI 8266和SP细胞中Cx43 mRNA和蛋白的表达。观察不同来源的骨髓间充质干细胞对SP细胞周期、体外集落形成能力、干细胞相关基因表达和耐药的影响,以及添加18α甘草次酸(18α ga)作为途径抑制剂的影响。在这里,我们证明MM细胞表达Cx43,并含有高比例的SP细胞。与RPMI 8226细胞相比,我们观察到SP细胞的存活和增殖能力增加,但18αGA处理SP细胞的存活和增殖能力降低(均P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connexin 43 gap junction affects survival and drug resistance of multiple myeloma side population cells.

Drug resistance remains a major challenge for multiple myeloma (MM) treatment, and side population (SP) cells may play a key role in this resistance. The function of connexin 43 (Cx43)-mediated gap junction intercellular communication (GJ-IC) in MM cells is poorly understood. Bone marrow mesenchymal stem cells (BMSCs) from different sources were isolated and cultured. SP cells of MM cell line RPMI 8266 were separated by flow cytometry. Real-time reverse transcriptase-polymerase chain reaction and Western blot were used to detect Cx43 mRNA and protein expression in BMSCs, RPMI 8266 and SP cells from different sources. The effects of BMSCs from different sources on SP cell cycle, in vitro colony formation ability, stem cell-related gene expression and drug resistance, and the addition of 18α glycyrrhetinic acid (18αGA) as a pathway inhibitor were observed. Here, we demonstrate that MM cells expressed Cx43 and contained a high percentage of SP cells. We observed an increase in the survival and proliferative capacity of SP cells compared with RPMI 8226 cells, but treatment with 18αGA decreased SP cell survival and proliferation (all P<0.05). MM cells were sensitive to dexamethasone- and bortezomib-induced apoptosis; however, this sensitivity was significantly decreased when MM cells were co-cultured with BMSCs, and 18αGA partly recovered this cytotoxicity (all P<0.05). Collectively, our data suggest that GJ-IC between BMSCs and MM cells is one of the important regulatory mechanisms underlying MM cells survival, proliferation, and drug sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
22.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Physiology and Pharmacology publishes papers which fall within the range of basic and applied physiology, pathophysiology and pharmacology. The papers should illustrate new physiological or pharmacological mechanisms at the level of the cell membrane, single cells, tissues or organs. Clinical studies, that are of fundamental importance and have a direct bearing on the pathophysiology will also be considered. Letters related to articles published in The Journal with topics of general professional interest are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信