使用改进的S形阈值EEMD的心电图信号降噪和QRS检测。

IF 1.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Ouahiba Mohguen
{"title":"使用改进的S形阈值EEMD的心电图信号降噪和QRS检测。","authors":"Ouahiba Mohguen","doi":"10.1515/bmt-2022-0450","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper.</p><p><strong>Methods: </strong>EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm.</p><p><strong>Results: </strong>The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input <i>SNR</i> (<i>SNR</i> <sub>in</sub>). Standard performance parameters output <i>SNR</i> (<i>SNR</i> <sub>out</sub>), mean square error (<i>MSE</i>), root mean square error (<i>RMSE</i>), <i>SNR</i> improvement (<i>SNR</i> <sub>imp</sub>) and percentage root mean square difference (<i>PRD</i>) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT).</p><p><strong>Conclusions: </strong>A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input <i>SNR</i> of -2 dB the <i>SNR</i> <sub>imp</sub> value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.</p>","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":" ","pages":"61-78"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise reduction and QRS detection in ECG signal using EEMD with modified sigmoid thresholding.\",\"authors\":\"Ouahiba Mohguen\",\"doi\":\"10.1515/bmt-2022-0450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper.</p><p><strong>Methods: </strong>EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm.</p><p><strong>Results: </strong>The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input <i>SNR</i> (<i>SNR</i> <sub>in</sub>). Standard performance parameters output <i>SNR</i> (<i>SNR</i> <sub>out</sub>), mean square error (<i>MSE</i>), root mean square error (<i>RMSE</i>), <i>SNR</i> improvement (<i>SNR</i> <sub>imp</sub>) and percentage root mean square difference (<i>PRD</i>) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT).</p><p><strong>Conclusions: </strong>A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input <i>SNR</i> of -2 dB the <i>SNR</i> <sub>imp</sub> value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.</p>\",\"PeriodicalId\":8900,\"journal\":{\"name\":\"Biomedical Engineering / Biomedizinische Technik\",\"volume\":\" \",\"pages\":\"61-78\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering / Biomedizinische Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/bmt-2022-0450\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2022-0450","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本文提出了一种基于经验模式分解(EMD)、集合经验模式分解和改进的Sigmoid阈值函数(MSTF)的新型心电信号降噪和QRS检测算法。方法:采用EMD和EEMD算法将有噪声的心电信号分解为一系列的内模函数。然后,MSTF对这些IMF进行阈值处理,以减少噪声并保留QRS复合波。之后,使用阈值IMF来获得干净的ECG信号。使用峰值检测算法来检测特征点P、Q、R、S和T的峰值。结果:通过在MIT-BIH心律失常数据库上的实验验证了所提出的方法,并在不同输入信噪比下将加性高斯白噪声(AWGN)添加到干净的ECG信号中。采用标准性能参数输出信噪比(SNR-out)、均方误差(MSE)、均方根误差(RMSE)、信噪比改进(SNR-imp)和均方根差百分比(PRD)来评估所提出方法的有效性。结果表明,与现有的最先进的方法(如小波去噪、传统EMD(EMD-Conv))相比,所提出的方法在去噪性能方面提供了显著的定量和定性改进,常规EEMD(EEMD-Conv,Stockwell变换(ST))和具有自适应噪声的混合区间阈值和高阶统计量选择相关模式的完全EEMD(CEEMDAN-HIT)。结论:详细的定量分析表明,对于异常心电图记录207 m和214 m,输入信噪比为-2 dB SNR imp值分别为12.22和11.58 dB,表明该算法可以作为心电信号去噪的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise reduction and QRS detection in ECG signal using EEMD with modified sigmoid thresholding.

Objectives: Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper.

Methods: EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm.

Results: The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input SNR (SNR in). Standard performance parameters output SNR (SNR out), mean square error (MSE), root mean square error (RMSE), SNR improvement (SNR imp) and percentage root mean square difference (PRD) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT).

Conclusions: A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input SNR of -2 dB the SNR imp value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.90%
发文量
58
审稿时长
2-3 weeks
期刊介绍: Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信