体液记忆何时会增强感染?

IF 4.3 2区 生物学
PLoS Computational Biology Pub Date : 2023-08-21 eCollection Date: 2023-08-01 DOI:10.1371/journal.pcbi.1011377
Ariel Nikas, Hasan Ahmed, Mia R Moore, Veronika I Zarnitsyna, Rustom Antia
{"title":"体液记忆何时会增强感染?","authors":"Ariel Nikas,&nbsp;Hasan Ahmed,&nbsp;Mia R Moore,&nbsp;Veronika I Zarnitsyna,&nbsp;Rustom Antia","doi":"10.1371/journal.pcbi.1011377","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470880/pdf/","citationCount":"1","resultStr":"{\"title\":\"When does humoral memory enhance infection?\",\"authors\":\"Ariel Nikas,&nbsp;Hasan Ahmed,&nbsp;Mia R Moore,&nbsp;Veronika I Zarnitsyna,&nbsp;Rustom Antia\",\"doi\":\"10.1371/journal.pcbi.1011377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470880/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011377\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011377","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抗体和体液记忆是适应性免疫系统的关键组成部分。我们考虑了基线时存在的体液记忆可能增加而不是减少感染负荷的机制,并对其进行了计算建模;我们将这种作用称为EI-HM(通过体液记忆增强感染)。我们首先考虑抗体依赖性增强(ADE),其中抗体增强病原体(通常是病毒)的生长,并且通常处于中等水平的“金发姑娘”抗体。我们的ADE模型在体外复制ADE,并通过被动抗体转移增强体内感染。但值得注意的是,我们的ADE模型的最简单实现从未产生EI-HM。通过使交叉反应性抗体比从头产生的抗体的中和性低得多,或者通过包括足够强的非抗体免疫反应,增加复杂性,允许ADE介导的EI-HM。接下来,我们考虑交叉反应记忆通过挤出可能优越的从头免疫反应而导致EI-HM的可能性。我们表明,即使没有ADE,当交叉反应反应的效力较低且对从头反应具有“直接”(即独立于感染负荷)抑制作用时,也可能发生EI-HM。在这种情况下,在我们的计算模型中添加非抗体免疫反应大大减少或完全消除了EI-HM,这表明“挤出”不太可能导致显著的EI-HM。因此,我们的结果提供了一些例子,在这些例子中,与具有合理复杂性的模型相比,简单模型给出了定性相反的结果。我们的研究结果可能有助于解释和调和不同的实验结果,特别是登革热的实验结果和疫苗接种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

When does humoral memory enhance infection?

When does humoral memory enhance infection?

When does humoral memory enhance infection?

When does humoral memory enhance infection?

Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate 'Goldilocks' levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and 'directly' (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that 'crowding out' is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信