评估医疗保健数据完整性对深度生成模型的影响。

IF 1.3 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Benjamin Smith, Senne Van Steelandt, Anahita Khojandi
{"title":"评估医疗保健数据完整性对深度生成模型的影响。","authors":"Benjamin Smith,&nbsp;Senne Van Steelandt,&nbsp;Anahita Khojandi","doi":"10.1055/a-2023-9181","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep generative models (DGMs) present a promising avenue for generating realistic, synthetic data to augment existing health care datasets. However, exactly how the completeness of the original dataset affects the quality of the generated synthetic data is unclear.</p><p><strong>Objectives: </strong>In this paper, we investigate the effect of data completeness on samples generated by the most common DGM paradigms.</p><p><strong>Methods: </strong>We create both cross-sectional and panel datasets with varying missingness and subset rates and train generative adversarial networks, variational autoencoders, and autoregressive models (Transformers) on these datasets. We then compare the distributions of generated data with original training data to measure similarity.</p><p><strong>Results: </strong>We find that increased incompleteness is directly correlated with increased dissimilarity between original and generated samples produced through DGMs.</p><p><strong>Conclusions: </strong>Care must be taken when using DGMs to generate synthetic data as data completeness issues can affect the quality of generated data in both panel and cross-sectional datasets.</p>","PeriodicalId":49822,"journal":{"name":"Methods of Information in Medicine","volume":"62 1-02","pages":"31-39"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Impact of Health Care Data Completeness for Deep Generative Models.\",\"authors\":\"Benjamin Smith,&nbsp;Senne Van Steelandt,&nbsp;Anahita Khojandi\",\"doi\":\"10.1055/a-2023-9181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Deep generative models (DGMs) present a promising avenue for generating realistic, synthetic data to augment existing health care datasets. However, exactly how the completeness of the original dataset affects the quality of the generated synthetic data is unclear.</p><p><strong>Objectives: </strong>In this paper, we investigate the effect of data completeness on samples generated by the most common DGM paradigms.</p><p><strong>Methods: </strong>We create both cross-sectional and panel datasets with varying missingness and subset rates and train generative adversarial networks, variational autoencoders, and autoregressive models (Transformers) on these datasets. We then compare the distributions of generated data with original training data to measure similarity.</p><p><strong>Results: </strong>We find that increased incompleteness is directly correlated with increased dissimilarity between original and generated samples produced through DGMs.</p><p><strong>Conclusions: </strong>Care must be taken when using DGMs to generate synthetic data as data completeness issues can affect the quality of generated data in both panel and cross-sectional datasets.</p>\",\"PeriodicalId\":49822,\"journal\":{\"name\":\"Methods of Information in Medicine\",\"volume\":\"62 1-02\",\"pages\":\"31-39\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Information in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2023-9181\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Information in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2023-9181","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:深度生成模型(dgm)为生成真实的合成数据以增强现有医疗保健数据集提供了一条有前途的途径。然而,原始数据集的完整性究竟如何影响生成的合成数据的质量尚不清楚。目的:在本文中,我们研究了数据完整性对最常见的DGM范式生成的样本的影响。方法:我们创建了具有不同缺失率和子集率的横截面和面板数据集,并在这些数据集上训练生成对抗网络、变分自编码器和自回归模型(transformer)。然后,我们将生成数据的分布与原始训练数据进行比较,以衡量相似性。结果:我们发现不完整性的增加与通过dgm产生的原始样品和生成样品之间的不相似性增加直接相关。结论:在使用dgm生成合成数据时必须小心,因为数据完整性问题会影响面板和横截面数据集生成数据的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Impact of Health Care Data Completeness for Deep Generative Models.

Background: Deep generative models (DGMs) present a promising avenue for generating realistic, synthetic data to augment existing health care datasets. However, exactly how the completeness of the original dataset affects the quality of the generated synthetic data is unclear.

Objectives: In this paper, we investigate the effect of data completeness on samples generated by the most common DGM paradigms.

Methods: We create both cross-sectional and panel datasets with varying missingness and subset rates and train generative adversarial networks, variational autoencoders, and autoregressive models (Transformers) on these datasets. We then compare the distributions of generated data with original training data to measure similarity.

Results: We find that increased incompleteness is directly correlated with increased dissimilarity between original and generated samples produced through DGMs.

Conclusions: Care must be taken when using DGMs to generate synthetic data as data completeness issues can affect the quality of generated data in both panel and cross-sectional datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods of Information in Medicine
Methods of Information in Medicine 医学-计算机:信息系统
CiteScore
3.70
自引率
11.80%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Good medicine and good healthcare demand good information. Since the journal''s founding in 1962, Methods of Information in Medicine has stressed the methodology and scientific fundamentals of organizing, representing and analyzing data, information and knowledge in biomedicine and health care. Covering publications in the fields of biomedical and health informatics, medical biometry, and epidemiology, the journal publishes original papers, reviews, reports, opinion papers, editorials, and letters to the editor. From time to time, the journal publishes articles on particular focus themes as part of a journal''s issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信