{"title":"视觉体验塑造了枕骨和非视觉网络之间的功能连接。","authors":"Mengyu Tian, Xiang Xiao, Huiqing Hu, Rhodri Cusack, Marina Bedny","doi":"10.1101/2023.02.21.528939","DOIUrl":null,"url":null,"abstract":"<p><p>Comparisons of visual cortex function across blind and sighted adults reveals effects of experience on human brain function. Since almost all research has been done with adults, little is known about the developmental origins of plasticity. We compared resting state functional connectivity of visual cortices of blind adults ( <i>n</i> = 30), blindfolded sighted adults ( <i>n</i> = 50) to a large cohort of sighted infants (Developing Human Connectome Project, <i>n</i> = 475). Visual cortices of sighted adults show stronger coupling with non-visual sensory-motor networks (auditory, somatosensory/motor), than with higher-cognitive prefrontal cortices (PFC). In contrast, visual cortices of blind adults show stronger coupling with higher-cognitive PFC than with nonvisual sensory-motor networks. Are infant visual cortices functionally like those of sighted adults? Alternatively, do infants start like blind adults, with vision required to set up the sighted adult pattern? Remarkably, we find that, in infants, secondary visual cortices are more like those of blind adults: stronger coupling with PFC than with nonvisual sensory-motor networks, suggesting that visual experience establishes elements of the sighted-adult long-range connectivity. Infant primary visual cortices are in-between blind and sighted adults i.e., equal PFC and sensory-motor connectivity. The lateralization of occipital-to-frontal connectivity in infants resembles the sighted adults, consistent with reorganization by blindness. These results reveal instructive effects of vision and reorganizing effects of blindness on functional connectivity.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980152/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visual experience shapes functional connectivity between occipital and non-visual networks.\",\"authors\":\"Mengyu Tian, Xiang Xiao, Huiqing Hu, Rhodri Cusack, Marina Bedny\",\"doi\":\"10.1101/2023.02.21.528939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Comparisons of visual cortex function across blind and sighted adults reveals effects of experience on human brain function. Since almost all research has been done with adults, little is known about the developmental origins of plasticity. We compared resting state functional connectivity of visual cortices of blind adults ( <i>n</i> = 30), blindfolded sighted adults ( <i>n</i> = 50) to a large cohort of sighted infants (Developing Human Connectome Project, <i>n</i> = 475). Visual cortices of sighted adults show stronger coupling with non-visual sensory-motor networks (auditory, somatosensory/motor), than with higher-cognitive prefrontal cortices (PFC). In contrast, visual cortices of blind adults show stronger coupling with higher-cognitive PFC than with nonvisual sensory-motor networks. Are infant visual cortices functionally like those of sighted adults? Alternatively, do infants start like blind adults, with vision required to set up the sighted adult pattern? Remarkably, we find that, in infants, secondary visual cortices are more like those of blind adults: stronger coupling with PFC than with nonvisual sensory-motor networks, suggesting that visual experience establishes elements of the sighted-adult long-range connectivity. Infant primary visual cortices are in-between blind and sighted adults i.e., equal PFC and sensory-motor connectivity. The lateralization of occipital-to-frontal connectivity in infants resembles the sighted adults, consistent with reorganization by blindness. These results reveal instructive effects of vision and reorganizing effects of blindness on functional connectivity.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980152/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.02.21.528939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.02.21.528939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual experience shapes functional connectivity between occipital and non-visual networks.
Comparisons of visual cortex function across blind and sighted adults reveals effects of experience on human brain function. Since almost all research has been done with adults, little is known about the developmental origins of plasticity. We compared resting state functional connectivity of visual cortices of blind adults ( n = 30), blindfolded sighted adults ( n = 50) to a large cohort of sighted infants (Developing Human Connectome Project, n = 475). Visual cortices of sighted adults show stronger coupling with non-visual sensory-motor networks (auditory, somatosensory/motor), than with higher-cognitive prefrontal cortices (PFC). In contrast, visual cortices of blind adults show stronger coupling with higher-cognitive PFC than with nonvisual sensory-motor networks. Are infant visual cortices functionally like those of sighted adults? Alternatively, do infants start like blind adults, with vision required to set up the sighted adult pattern? Remarkably, we find that, in infants, secondary visual cortices are more like those of blind adults: stronger coupling with PFC than with nonvisual sensory-motor networks, suggesting that visual experience establishes elements of the sighted-adult long-range connectivity. Infant primary visual cortices are in-between blind and sighted adults i.e., equal PFC and sensory-motor connectivity. The lateralization of occipital-to-frontal connectivity in infants resembles the sighted adults, consistent with reorganization by blindness. These results reveal instructive effects of vision and reorganizing effects of blindness on functional connectivity.