Sarah Kammerer, Elisabeth Nowak, René Mantke, Friedrich Jung, Jan-Heiner Küpper
{"title":"利用具有生物转化能力的 HepG2 细胞对肝脏首过效应进行体外模拟,以研究 MG-132 对肝脏和癌细胞的影响。","authors":"Sarah Kammerer, Elisabeth Nowak, René Mantke, Friedrich Jung, Jan-Heiner Küpper","doi":"10.3233/CH-238108","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liver biotransformation is the major route for drug metabolism in humans, often catalysed by cytochrome P450 (CYP) enzymes. This first-pass effect can lead to hepatotoxicity and influences the bioavailability of drugs.</p><p><strong>Objective: </strong>We aimed to establish in vitro culture systems simulating the liver first-pass to study effects of the proteasome inhibitor MG-132 simultaneously on hepatocytes and cancer cells.</p><p><strong>Methods: </strong>The first-pass effect was simulated by conditioned medium transfer (CMT) from pre-treated HepG2 CYP3A4-overexpressing cells to either pancreatic cancer cell line PANC-1 or primary colon cancer cells, and by indirect co-culture (CC) of liver and cancer cells in a shared medium compartment. Experimental proteasome inhibitor MG-132 was used as test substance as it is detoxified by CYP3A4.</p><p><strong>Results: </strong>Cancer cells showed higher viabilities in the first-pass simulation by CMT and CC formats when compared to monocultures indicating effective detoxification of MG-132 by HepG2 CYP3A4-overexpressing cells. HepG2-CYP3A4 cells showed reduced viabilites after treatment with MG-132.</p><p><strong>Conclusions: </strong>We successfully established two different culture systems to simulate the liver first-pass effect in vitro. Such systems easily allow to study drug effects simultaneously on liver and on target cancer cells. They are of great value in pre-clinical cancer research, pharmaceutical research and drug development.</p>","PeriodicalId":10425,"journal":{"name":"Clinical hemorheology and microcirculation","volume":" ","pages":"159-168"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro simulation of the liver first-pass effect with biotransformation-competent HepG2 cells to study effects of MG-132 on liver and cancer cells.\",\"authors\":\"Sarah Kammerer, Elisabeth Nowak, René Mantke, Friedrich Jung, Jan-Heiner Küpper\",\"doi\":\"10.3233/CH-238108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Liver biotransformation is the major route for drug metabolism in humans, often catalysed by cytochrome P450 (CYP) enzymes. This first-pass effect can lead to hepatotoxicity and influences the bioavailability of drugs.</p><p><strong>Objective: </strong>We aimed to establish in vitro culture systems simulating the liver first-pass to study effects of the proteasome inhibitor MG-132 simultaneously on hepatocytes and cancer cells.</p><p><strong>Methods: </strong>The first-pass effect was simulated by conditioned medium transfer (CMT) from pre-treated HepG2 CYP3A4-overexpressing cells to either pancreatic cancer cell line PANC-1 or primary colon cancer cells, and by indirect co-culture (CC) of liver and cancer cells in a shared medium compartment. Experimental proteasome inhibitor MG-132 was used as test substance as it is detoxified by CYP3A4.</p><p><strong>Results: </strong>Cancer cells showed higher viabilities in the first-pass simulation by CMT and CC formats when compared to monocultures indicating effective detoxification of MG-132 by HepG2 CYP3A4-overexpressing cells. HepG2-CYP3A4 cells showed reduced viabilites after treatment with MG-132.</p><p><strong>Conclusions: </strong>We successfully established two different culture systems to simulate the liver first-pass effect in vitro. Such systems easily allow to study drug effects simultaneously on liver and on target cancer cells. They are of great value in pre-clinical cancer research, pharmaceutical research and drug development.</p>\",\"PeriodicalId\":10425,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\" \",\"pages\":\"159-168\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-238108\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CH-238108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
In vitro simulation of the liver first-pass effect with biotransformation-competent HepG2 cells to study effects of MG-132 on liver and cancer cells.
Background: Liver biotransformation is the major route for drug metabolism in humans, often catalysed by cytochrome P450 (CYP) enzymes. This first-pass effect can lead to hepatotoxicity and influences the bioavailability of drugs.
Objective: We aimed to establish in vitro culture systems simulating the liver first-pass to study effects of the proteasome inhibitor MG-132 simultaneously on hepatocytes and cancer cells.
Methods: The first-pass effect was simulated by conditioned medium transfer (CMT) from pre-treated HepG2 CYP3A4-overexpressing cells to either pancreatic cancer cell line PANC-1 or primary colon cancer cells, and by indirect co-culture (CC) of liver and cancer cells in a shared medium compartment. Experimental proteasome inhibitor MG-132 was used as test substance as it is detoxified by CYP3A4.
Results: Cancer cells showed higher viabilities in the first-pass simulation by CMT and CC formats when compared to monocultures indicating effective detoxification of MG-132 by HepG2 CYP3A4-overexpressing cells. HepG2-CYP3A4 cells showed reduced viabilites after treatment with MG-132.
Conclusions: We successfully established two different culture systems to simulate the liver first-pass effect in vitro. Such systems easily allow to study drug effects simultaneously on liver and on target cancer cells. They are of great value in pre-clinical cancer research, pharmaceutical research and drug development.
期刊介绍:
Clinical Hemorheology and Microcirculation, a peer-reviewed international scientific journal, serves as an aid to understanding the flow properties of blood and the relationship to normal and abnormal physiology. The rapidly expanding science of hemorheology concerns blood, its components and the blood vessels with which blood interacts. It includes perihemorheology, i.e., the rheology of fluid and structures in the perivascular and interstitial spaces as well as the lymphatic system. The clinical aspects include pathogenesis, symptomatology and diagnostic methods, and the fields of prophylaxis and therapy in all branches of medicine and surgery, pharmacology and drug research.
The endeavour of the Editors-in-Chief and publishers of Clinical Hemorheology and Microcirculation is to bring together contributions from those working in various fields related to blood flow all over the world. The editors of Clinical Hemorheology and Microcirculation are from those countries in Europe, Asia, Australia and America where appreciable work in clinical hemorheology and microcirculation is being carried out. Each editor takes responsibility to decide on the acceptance of a manuscript. He is required to have the manuscript appraised by two referees and may be one of them himself. The executive editorial office, to which the manuscripts have been submitted, is responsible for rapid handling of the reviewing process.
Clinical Hemorheology and Microcirculation accepts original papers, brief communications, mini-reports and letters to the Editors-in-Chief. Review articles, providing general views and new insights into related subjects, are regularly invited by the Editors-in-Chief. Proceedings of international and national conferences on clinical hemorheology (in original form or as abstracts) complete the range of editorial features.