{"title":"AGE RAGE途径:心血管疾病和氧化应激。","authors":"Neeraj Sharma, Pavan Kumar, Karuna Shanker Shukla, Shubhrat Maheshwari","doi":"10.1055/a-2047-3896","DOIUrl":null,"url":null,"abstract":"<p><p>It is well established that Advanced Glycation End Products (AGEs) and their receptor (RAGE) are primarily responsible for the development of cardiovascular disease. As a result, diabetic therapy is very interested in therapeutic strategies that can target the AGE-RAGE axis. The majority of the AGE-RAGE inhibitors showed encouraging outcomes in animal experiments, but more information is needed to completely understand their clinical effects. The main mechanism implicated in the aetiology of cardiovascular disease in people with diabetes is oxidative stress and inflammation mediated by AGE-RAGE interaction. Numerous PPAR-agonists have demonstrated favourable outcomes in the treatment of cardio-metabolic illness situations by inhibiting the AGE-RAGE axis. The body's ubiquitous phenomena of inflammation occur in reaction to environmental stressors such tissue damage, infection by pathogens, or exposure to toxic substances. Rubor (redness), calor (heat), tumour (swelling), colour (pain), and in severe cases, loss of function, are its cardinal symptoms. When exposed, the lungs develop silicotic granulomas with the synthesis of collagen and reticulin fibres. A natural flavonoid called chyrsin has been found to have PPAR-agonist activity as well as antioxidant and anti-inflammatory properties. The RPE insod2+/animals underwent mononuclear phagocyte-induced apoptosis, which was accompanied with decreased superoxide dismutase 2 (SOD2) and increased superoxide generation. Injections of the serine proteinase inhibitor SERPINA3K decreased proinflammatory factor expression in mice with oxygen-induced retinopathy, decreased ROS production, and increased levels of SOD and GSH.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":"73 7","pages":"408-411"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AGE RAGE Pathways: Cardiovascular Disease and Oxidative Stress.\",\"authors\":\"Neeraj Sharma, Pavan Kumar, Karuna Shanker Shukla, Shubhrat Maheshwari\",\"doi\":\"10.1055/a-2047-3896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well established that Advanced Glycation End Products (AGEs) and their receptor (RAGE) are primarily responsible for the development of cardiovascular disease. As a result, diabetic therapy is very interested in therapeutic strategies that can target the AGE-RAGE axis. The majority of the AGE-RAGE inhibitors showed encouraging outcomes in animal experiments, but more information is needed to completely understand their clinical effects. The main mechanism implicated in the aetiology of cardiovascular disease in people with diabetes is oxidative stress and inflammation mediated by AGE-RAGE interaction. Numerous PPAR-agonists have demonstrated favourable outcomes in the treatment of cardio-metabolic illness situations by inhibiting the AGE-RAGE axis. The body's ubiquitous phenomena of inflammation occur in reaction to environmental stressors such tissue damage, infection by pathogens, or exposure to toxic substances. Rubor (redness), calor (heat), tumour (swelling), colour (pain), and in severe cases, loss of function, are its cardinal symptoms. When exposed, the lungs develop silicotic granulomas with the synthesis of collagen and reticulin fibres. A natural flavonoid called chyrsin has been found to have PPAR-agonist activity as well as antioxidant and anti-inflammatory properties. The RPE insod2+/animals underwent mononuclear phagocyte-induced apoptosis, which was accompanied with decreased superoxide dismutase 2 (SOD2) and increased superoxide generation. Injections of the serine proteinase inhibitor SERPINA3K decreased proinflammatory factor expression in mice with oxygen-induced retinopathy, decreased ROS production, and increased levels of SOD and GSH.</p>\",\"PeriodicalId\":11451,\"journal\":{\"name\":\"Drug Research\",\"volume\":\"73 7\",\"pages\":\"408-411\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2047-3896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2047-3896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
AGE RAGE Pathways: Cardiovascular Disease and Oxidative Stress.
It is well established that Advanced Glycation End Products (AGEs) and their receptor (RAGE) are primarily responsible for the development of cardiovascular disease. As a result, diabetic therapy is very interested in therapeutic strategies that can target the AGE-RAGE axis. The majority of the AGE-RAGE inhibitors showed encouraging outcomes in animal experiments, but more information is needed to completely understand their clinical effects. The main mechanism implicated in the aetiology of cardiovascular disease in people with diabetes is oxidative stress and inflammation mediated by AGE-RAGE interaction. Numerous PPAR-agonists have demonstrated favourable outcomes in the treatment of cardio-metabolic illness situations by inhibiting the AGE-RAGE axis. The body's ubiquitous phenomena of inflammation occur in reaction to environmental stressors such tissue damage, infection by pathogens, or exposure to toxic substances. Rubor (redness), calor (heat), tumour (swelling), colour (pain), and in severe cases, loss of function, are its cardinal symptoms. When exposed, the lungs develop silicotic granulomas with the synthesis of collagen and reticulin fibres. A natural flavonoid called chyrsin has been found to have PPAR-agonist activity as well as antioxidant and anti-inflammatory properties. The RPE insod2+/animals underwent mononuclear phagocyte-induced apoptosis, which was accompanied with decreased superoxide dismutase 2 (SOD2) and increased superoxide generation. Injections of the serine proteinase inhibitor SERPINA3K decreased proinflammatory factor expression in mice with oxygen-induced retinopathy, decreased ROS production, and increased levels of SOD and GSH.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.