Yan Li, Katherine E Irimata, Yulei He, Jennifer Parker
{"title":"变量包含策略通过有向无环图调整健康调查受选择偏差产生的国家估计。","authors":"Yan Li, Katherine E Irimata, Yulei He, Jennifer Parker","doi":"10.2478/jos-2022-0038","DOIUrl":null,"url":null,"abstract":"<p><p>Along with the rapid emergence of web surveys to address time-sensitive priority topics, various propensity score (PS)-based adjustment methods have been developed to improve population representativeness for nonprobability- or probability-sampled web surveys subject to selection bias. Conventional PS-based methods construct pseudo-weights for web samples using a higher-quality reference probability sample. The bias reduction, however, depends on the outcome and variables collected in both web and reference samples. A central issue is identifying variables for inclusion in PS-adjustment. In this paper, directed acyclic graph (DAG), a common graphical tool for causal studies but largely under-utilized in survey research, is used to examine and elucidate how different types of variables in the causal pathways impact the performance of PS-adjustment. While past literature generally recommends including all variables, our research demonstrates that only certain types of variables are needed in PS-adjustment. Our research is illustrated by NCHS' Research and Development Survey, a probability-sampled web survey with potential selection bias, PS-adjusted to the National Health Interview Survey, to estimate U.S. asthma prevalence. Findings in this paper can be used by National Statistics Offices to design questionnaires with variables that improve web-samples' population representativeness and to release more timely and accurate estimates for priority topics.</p>","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"38 3","pages":"875-900"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490791/pdf/nihms-1807439.pdf","citationCount":"4","resultStr":"{\"title\":\"Variable inclusion strategies through directed acyclic graphs to adjust health surveys subject to selection bias for producing national estimates.\",\"authors\":\"Yan Li, Katherine E Irimata, Yulei He, Jennifer Parker\",\"doi\":\"10.2478/jos-2022-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Along with the rapid emergence of web surveys to address time-sensitive priority topics, various propensity score (PS)-based adjustment methods have been developed to improve population representativeness for nonprobability- or probability-sampled web surveys subject to selection bias. Conventional PS-based methods construct pseudo-weights for web samples using a higher-quality reference probability sample. The bias reduction, however, depends on the outcome and variables collected in both web and reference samples. A central issue is identifying variables for inclusion in PS-adjustment. In this paper, directed acyclic graph (DAG), a common graphical tool for causal studies but largely under-utilized in survey research, is used to examine and elucidate how different types of variables in the causal pathways impact the performance of PS-adjustment. While past literature generally recommends including all variables, our research demonstrates that only certain types of variables are needed in PS-adjustment. Our research is illustrated by NCHS' Research and Development Survey, a probability-sampled web survey with potential selection bias, PS-adjusted to the National Health Interview Survey, to estimate U.S. asthma prevalence. Findings in this paper can be used by National Statistics Offices to design questionnaires with variables that improve web-samples' population representativeness and to release more timely and accurate estimates for priority topics.</p>\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"38 3\",\"pages\":\"875-900\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9490791/pdf/nihms-1807439.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2022-0038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2022-0038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Variable inclusion strategies through directed acyclic graphs to adjust health surveys subject to selection bias for producing national estimates.
Along with the rapid emergence of web surveys to address time-sensitive priority topics, various propensity score (PS)-based adjustment methods have been developed to improve population representativeness for nonprobability- or probability-sampled web surveys subject to selection bias. Conventional PS-based methods construct pseudo-weights for web samples using a higher-quality reference probability sample. The bias reduction, however, depends on the outcome and variables collected in both web and reference samples. A central issue is identifying variables for inclusion in PS-adjustment. In this paper, directed acyclic graph (DAG), a common graphical tool for causal studies but largely under-utilized in survey research, is used to examine and elucidate how different types of variables in the causal pathways impact the performance of PS-adjustment. While past literature generally recommends including all variables, our research demonstrates that only certain types of variables are needed in PS-adjustment. Our research is illustrated by NCHS' Research and Development Survey, a probability-sampled web survey with potential selection bias, PS-adjusted to the National Health Interview Survey, to estimate U.S. asthma prevalence. Findings in this paper can be used by National Statistics Offices to design questionnaires with variables that improve web-samples' population representativeness and to release more timely and accurate estimates for priority topics.
期刊介绍:
JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.