口腔黏膜等效物、血管前处理方法和潜在应用。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2022-09-01 Epub Date: 2022-02-08 DOI:10.1080/03008207.2022.2035375
Daniela S Masson-Meyers, Luiz E Bertassoni, Lobat Tayebi
{"title":"口腔黏膜等效物、血管前处理方法和潜在应用。","authors":"Daniela S Masson-Meyers, Luiz E Bertassoni, Lobat Tayebi","doi":"10.1080/03008207.2022.2035375","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oral mucosa equivalents (OMEs) have been used as <i>in vitro</i> models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs.</p><p><strong>Purpose: </strong>The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and <i>in vitro</i> and clinical potential applications.</p><p><strong>Study selection: </strong>Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs.</p><p><strong>Conclusions: </strong>Several studies have reported the development and <i>in vitro</i> and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357199/pdf/nihms-1823920.pdf","citationCount":"4","resultStr":"{\"title\":\"Oral mucosa equivalents, prevascularization approaches, and potential applications.\",\"authors\":\"Daniela S Masson-Meyers, Luiz E Bertassoni, Lobat Tayebi\",\"doi\":\"10.1080/03008207.2022.2035375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Oral mucosa equivalents (OMEs) have been used as <i>in vitro</i> models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs.</p><p><strong>Purpose: </strong>The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and <i>in vitro</i> and clinical potential applications.</p><p><strong>Study selection: </strong>Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs.</p><p><strong>Conclusions: </strong>Several studies have reported the development and <i>in vitro</i> and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357199/pdf/nihms-1823920.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2022.2035375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2035375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

背景:口腔粘膜等效物(OMEs)已被用作体外模型(例如,用于人类口腔粘膜生物学和病理学研究、口腔护理产品的毒理学和药理学测试),并在临床上用于治疗口腔缺陷。然而,人类口腔黏膜是一种高度血管化的组织,由于缺乏血管化,大型 OMEs 的植入可能会失败。目的:本综述旨在概述人类口腔粘膜结构、重建口腔粘膜的常用方法、OMEs 的开发、血管前化以及体外和临床潜在应用:研究选择:纳入了有关无血管前化和血管前化口腔黏膜的文章,因为无血管前化口腔黏膜的开发和应用是血管前化口腔黏膜的设计、制造和优化的基础:结论:已有多项研究报道了血管外皮生长因子的开发、体外和临床应用,只有少数研究采用不同的方法制作和加入内皮细胞,研究了血管前的血管外皮生长因子,这表明缺乏获得这些等效物的标准化方案。不过,这些研究表明了预血管化 OMEs 的可行性,将其植入动物模型可增强整合和愈合。组织等效血管化仍是一项挑战,需要优化细胞培养条件、生物材料和制造技术,并开展临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oral mucosa equivalents, prevascularization approaches, and potential applications.

Background: Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs.

Purpose: The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications.

Study selection: Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs.

Conclusions: Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信