Matrix Whittaker过程。

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Probability Theory and Related Fields Pub Date : 2023-01-01 Epub Date: 2023-05-14 DOI:10.1007/s00440-023-01210-y
Jonas Arista, Elia Bisi, Neil O'Connell
{"title":"Matrix Whittaker过程。","authors":"Jonas Arista,&nbsp;Elia Bisi,&nbsp;Neil O'Connell","doi":"10.1007/s00440-023-01210-y","DOIUrl":null,"url":null,"abstract":"<p><p>We study a discrete-time Markov process on triangular arrays of matrices of size <math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math>, driven by inverse Wishart random matrices. The components of the right edge evolve as multiplicative random walks on positive definite matrices with one-sided interactions and can be viewed as a <i>d</i>-dimensional generalisation of log-gamma polymer partition functions. We establish intertwining relations to prove that, for suitable initial configurations of the triangular process, the bottom edge has an autonomous Markovian evolution with an explicit transition kernel. We then show that, for a special singular initial configuration, the fixed-time law of the bottom edge is a matrix Whittaker measure, which we define. To achieve this, we perform a Laplace approximation that requires solving a constrained minimisation problem for certain energy functions of matrix arguments on directed graphs.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"187 1-2","pages":"203-257"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465476/pdf/","citationCount":"0","resultStr":"{\"title\":\"Matrix Whittaker processes.\",\"authors\":\"Jonas Arista,&nbsp;Elia Bisi,&nbsp;Neil O'Connell\",\"doi\":\"10.1007/s00440-023-01210-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study a discrete-time Markov process on triangular arrays of matrices of size <math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math>, driven by inverse Wishart random matrices. The components of the right edge evolve as multiplicative random walks on positive definite matrices with one-sided interactions and can be viewed as a <i>d</i>-dimensional generalisation of log-gamma polymer partition functions. We establish intertwining relations to prove that, for suitable initial configurations of the triangular process, the bottom edge has an autonomous Markovian evolution with an explicit transition kernel. We then show that, for a special singular initial configuration, the fixed-time law of the bottom edge is a matrix Whittaker measure, which we define. To achieve this, we perform a Laplace approximation that requires solving a constrained minimisation problem for certain energy functions of matrix arguments on directed graphs.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"187 1-2\",\"pages\":\"203-257\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465476/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01210-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01210-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由逆Wishart随机矩阵驱动的d≥1矩阵三角阵列上的离散时间马尔可夫过程。右边缘的分量在具有单侧相互作用的正定矩阵上演化为乘法随机游动,并且可以被视为对数伽马聚合物配分函数的d维推广。我们建立了交织关系来证明,对于三角过程的适当初始配置,底边具有具有显式过渡核的自主马尔可夫进化。然后我们证明,对于一个特殊的奇异初始配置,底边的固定时间律是一个矩阵Whittaker测度,我们定义了它。为了实现这一点,我们执行拉普拉斯近似,该近似需要解决有向图上矩阵自变量的某些能量函数的约束最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Matrix Whittaker processes.

Matrix Whittaker processes.

Matrix Whittaker processes.

Matrix Whittaker processes.

We study a discrete-time Markov process on triangular arrays of matrices of size d1, driven by inverse Wishart random matrices. The components of the right edge evolve as multiplicative random walks on positive definite matrices with one-sided interactions and can be viewed as a d-dimensional generalisation of log-gamma polymer partition functions. We establish intertwining relations to prove that, for suitable initial configurations of the triangular process, the bottom edge has an autonomous Markovian evolution with an explicit transition kernel. We then show that, for a special singular initial configuration, the fixed-time law of the bottom edge is a matrix Whittaker measure, which we define. To achieve this, we perform a Laplace approximation that requires solving a constrained minimisation problem for certain energy functions of matrix arguments on directed graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信