低温电子显微镜图像的快速主成分分析。

Biological imaging Pub Date : 2023-01-01 Epub Date: 2023-02-03 DOI:10.1017/s2633903x23000028
Nicholas F Marshall, Oscar Mickelin, Yunpeng Shi, Amit Singer
{"title":"低温电子显微镜图像的快速主成分分析。","authors":"Nicholas F Marshall, Oscar Mickelin, Yunpeng Shi, Amit Singer","doi":"10.1017/s2633903x23000028","DOIUrl":null,"url":null,"abstract":"<p><p>Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For <i>N</i> images of size <i>L</i> × <i>L</i>, our method has time complexity <i>O</i>(<i>NL</i><sup>3</sup> + <i>L</i><sup>4</sup>) and space complexity <i>O</i>(<i>NL</i><sup>2</sup> + <i>L</i><sup>3</sup>). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.</p>","PeriodicalId":72371,"journal":{"name":"Biological imaging","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast principal component analysis for cryo-electron microscopy images.\",\"authors\":\"Nicholas F Marshall, Oscar Mickelin, Yunpeng Shi, Amit Singer\",\"doi\":\"10.1017/s2633903x23000028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For <i>N</i> images of size <i>L</i> × <i>L</i>, our method has time complexity <i>O</i>(<i>NL</i><sup>3</sup> + <i>L</i><sup>4</sup>) and space complexity <i>O</i>(<i>NL</i><sup>2</sup> + <i>L</i><sup>3</sup>). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.</p>\",\"PeriodicalId\":72371,\"journal\":{\"name\":\"Biological imaging\",\"volume\":\"3 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s2633903x23000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s2633903x23000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主成分分析(PCA)在冷冻电子显微镜(cryo-EM)图像分析中发挥着重要作用,可用于分类、去噪、压缩和 ab initio 建模等各种任务。我们介绍了一种快速方法,用于估计受径向点扩散函数影响的噪声冷冻电镜投影图像的二维协方差矩阵的压缩表示,从而实现快速 PCA 计算。我们的方法基于一种在傅立叶-贝塞尔基(圆盘上的谐波)上扩展图像的新算法,它为处理对比度传递函数的影响提供了一种便捷的方法。对于大小为 L × L 的 N 幅图像,我们的方法的时间复杂度为 O(NL3 + L4),空间复杂度为 O(NL2 + L3)。与之前的研究相比,这些复杂度与图像不同对比度传递函数的数量无关。我们在合成数据和实验数据上演示了我们的方法,结果表明加速度可达两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast principal component analysis for cryo-electron microscopy images.

Fast principal component analysis for cryo-electron microscopy images.

Fast principal component analysis for cryo-electron microscopy images.

Fast principal component analysis for cryo-electron microscopy images.

Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For N images of size L × L, our method has time complexity O(NL3 + L4) and space complexity O(NL2 + L3). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信