BALDR:一个基于Web的平台,用于2型糖尿病候选生物标志物的知情比较和优先级排序。

IF 4.3 2区 生物学
PLoS Computational Biology Pub Date : 2023-08-17 eCollection Date: 2023-08-01 DOI:10.1371/journal.pcbi.1011403
Agnete T Lundgaard, Frédéric Burdet, Troels Siggaard, David Westergaard, Danai Vagiaki, Lisa Cantwell, Timo Röder, Dorte Vistisen, Thomas Sparsø, Giuseppe N Giordano, Mark Ibberson, Karina Banasik, Søren Brunak
{"title":"BALDR:一个基于Web的平台,用于2型糖尿病候选生物标志物的知情比较和优先级排序。","authors":"Agnete T Lundgaard,&nbsp;Frédéric Burdet,&nbsp;Troels Siggaard,&nbsp;David Westergaard,&nbsp;Danai Vagiaki,&nbsp;Lisa Cantwell,&nbsp;Timo Röder,&nbsp;Dorte Vistisen,&nbsp;Thomas Sparsø,&nbsp;Giuseppe N Giordano,&nbsp;Mark Ibberson,&nbsp;Karina Banasik,&nbsp;Søren Brunak","doi":"10.1371/journal.pcbi.1011403","DOIUrl":null,"url":null,"abstract":"<p><p>Novel biomarkers are key to addressing the ongoing pandemic of type 2 diabetes mellitus. While new technologies have improved the potential of identifying such biomarkers, at the same time there is an increasing need for informed prioritization to ensure efficient downstream verification. We have built BALDR, an automated pipeline for biomarker comparison and prioritization in the context of diabetes. BALDR includes protein, gene, and disease data from major public repositories, text-mining data, and human and mouse experimental data from the IMI2 RHAPSODY consortium. These data are provided as easy-to-read figures and tables enabling direct comparison of up to 20 biomarker candidates for diabetes through the public website https://baldr.cpr.ku.dk.</p>","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464978/pdf/","citationCount":"0","resultStr":"{\"title\":\"BALDR: A Web-based platform for informed comparison and prioritization of biomarker candidates for type 2 diabetes mellitus.\",\"authors\":\"Agnete T Lundgaard,&nbsp;Frédéric Burdet,&nbsp;Troels Siggaard,&nbsp;David Westergaard,&nbsp;Danai Vagiaki,&nbsp;Lisa Cantwell,&nbsp;Timo Röder,&nbsp;Dorte Vistisen,&nbsp;Thomas Sparsø,&nbsp;Giuseppe N Giordano,&nbsp;Mark Ibberson,&nbsp;Karina Banasik,&nbsp;Søren Brunak\",\"doi\":\"10.1371/journal.pcbi.1011403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel biomarkers are key to addressing the ongoing pandemic of type 2 diabetes mellitus. While new technologies have improved the potential of identifying such biomarkers, at the same time there is an increasing need for informed prioritization to ensure efficient downstream verification. We have built BALDR, an automated pipeline for biomarker comparison and prioritization in the context of diabetes. BALDR includes protein, gene, and disease data from major public repositories, text-mining data, and human and mouse experimental data from the IMI2 RHAPSODY consortium. These data are provided as easy-to-read figures and tables enabling direct comparison of up to 20 biomarker candidates for diabetes through the public website https://baldr.cpr.ku.dk.</p>\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011403\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011403","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新型生物标志物是应对2型糖尿病持续流行的关键。虽然新技术提高了识别此类生物标志物的潜力,但同时也越来越需要知情的优先顺序,以确保有效的下游验证。我们已经建立了BALDR,这是一个在糖尿病背景下进行生物标志物比较和优先排序的自动化管道。BALDR包括来自主要公共存储库的蛋白质、基因和疾病数据、文本挖掘数据以及来自IMI2-RHAPSODY联盟的人类和小鼠实验数据。这些数据以易于阅读的图表形式提供,可以通过公共网站直接比较多达20种糖尿病候选生物标志物https://baldr.cpr.ku.dk.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BALDR: A Web-based platform for informed comparison and prioritization of biomarker candidates for type 2 diabetes mellitus.

Novel biomarkers are key to addressing the ongoing pandemic of type 2 diabetes mellitus. While new technologies have improved the potential of identifying such biomarkers, at the same time there is an increasing need for informed prioritization to ensure efficient downstream verification. We have built BALDR, an automated pipeline for biomarker comparison and prioritization in the context of diabetes. BALDR includes protein, gene, and disease data from major public repositories, text-mining data, and human and mouse experimental data from the IMI2 RHAPSODY consortium. These data are provided as easy-to-read figures and tables enabling direct comparison of up to 20 biomarker candidates for diabetes through the public website https://baldr.cpr.ku.dk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology 生物-生化研究方法
CiteScore
7.10
自引率
4.70%
发文量
820
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信