用于多模态神经科学的透明、低阻抗喷墨打印 PEDOT:PSS 微电极。

Preston D Donaldson, Sarah L Swisher
{"title":"用于多模态神经科学的透明、低阻抗喷墨打印 PEDOT:PSS 微电极。","authors":"Preston D Donaldson, Sarah L Swisher","doi":"10.1002/pssa.202100683","DOIUrl":null,"url":null,"abstract":"<p><p>Transparent microelectrodes that facilitate simultaneous optical and electrophysiological interfacing are desirable tools for neuroscience. Electrodes made from transparent conductors such as graphene and indium tin oxide (ITO) show promise but are often limited by poor interfacial charge-transfer properties. Here, microelectrodes are demonstrated that take advantage of the transparency and volumetric capacitance of the mixed ion-electron conductor Poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Ring-shaped microelectrodes are fabricated by inkjet-printing PEDOT:PSS, encapsulating with Parylene-C, and then exposing a contact site that is much smaller than the microelectrode outer diameter. This unique structure allows the encapsulated portion of the microelectrode volume surrounding the contact site to participate in signal transduction, which reduces impedance and enhances charge storage capacity. While using the same 100 μm diameter contact site, increasing the outer diameter of the encapsulated electrode from 300 to 550 μm reduces the impedance from 294±21 to 98±2 kΩ, respectively, at 1 Hz. Similarly, the charge storage capacity is enhanced from 6 to 21 mC cm<sup>-2</sup>. The PEDOT:PSS microelectrodes provide a low-haze, high-transmittance optical interface, demonstrating their suitability for optical neuroscience applications. They remain functional after a million 1 V stimulation cycles, up to 600 μA of stimulation current, and more than 1000 mechanical bending cycles.</p>","PeriodicalId":74443,"journal":{"name":"Physica status solidi. A, Applications and materials science : PSS","volume":"219 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461862/pdf/nihms-1784500.pdf","citationCount":"0","resultStr":"{\"title\":\"Transparent, Low-Impedance Inkjet-Printed PEDOT:PSS Microelectrodes for Multi-modal Neuroscience.\",\"authors\":\"Preston D Donaldson, Sarah L Swisher\",\"doi\":\"10.1002/pssa.202100683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transparent microelectrodes that facilitate simultaneous optical and electrophysiological interfacing are desirable tools for neuroscience. Electrodes made from transparent conductors such as graphene and indium tin oxide (ITO) show promise but are often limited by poor interfacial charge-transfer properties. Here, microelectrodes are demonstrated that take advantage of the transparency and volumetric capacitance of the mixed ion-electron conductor Poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Ring-shaped microelectrodes are fabricated by inkjet-printing PEDOT:PSS, encapsulating with Parylene-C, and then exposing a contact site that is much smaller than the microelectrode outer diameter. This unique structure allows the encapsulated portion of the microelectrode volume surrounding the contact site to participate in signal transduction, which reduces impedance and enhances charge storage capacity. While using the same 100 μm diameter contact site, increasing the outer diameter of the encapsulated electrode from 300 to 550 μm reduces the impedance from 294±21 to 98±2 kΩ, respectively, at 1 Hz. Similarly, the charge storage capacity is enhanced from 6 to 21 mC cm<sup>-2</sup>. The PEDOT:PSS microelectrodes provide a low-haze, high-transmittance optical interface, demonstrating their suitability for optical neuroscience applications. They remain functional after a million 1 V stimulation cycles, up to 600 μA of stimulation current, and more than 1000 mechanical bending cycles.</p>\",\"PeriodicalId\":74443,\"journal\":{\"name\":\"Physica status solidi. A, Applications and materials science : PSS\",\"volume\":\"219 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461862/pdf/nihms-1784500.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica status solidi. A, Applications and materials science : PSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202100683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi. A, Applications and materials science : PSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202100683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可同时进行光学和电生理接口的透明微电极是神经科学的理想工具。由石墨烯和氧化铟锡(ITO)等透明导体制成的电极前景广阔,但往往受到界面电荷转移特性差的限制。这里展示的微电极利用了离子电子混合导体聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)的透明性和体积电容。环形微电极是通过喷墨打印 PEDOT:PSS、封装 Parylene-C,然后暴露出一个比微电极外径小得多的接触点来制造的。这种独特的结构使接触点周围的微电极封装部分参与信号传导,从而降低了阻抗并提高了电荷存储能力。在使用相同的 100 μm 直径接触点的情况下,封装电极的外径从 300 μm 增加到 550 μm,在 1 Hz 频率下,阻抗分别从 294±21 kΩ 减小到 98±2 kΩ。同样,电荷存储容量也从 6 mC cm-2 提高到 21 mC cm-2。PEDOT:PSS 微电极提供了一个低杂波、高透射率的光学接口,证明了其在光学神经科学应用中的适用性。在经过一百万次 1 V 刺激循环、高达 600 μA 的刺激电流和超过 1000 次机械弯曲循环后,它们仍能保持功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transparent, Low-Impedance Inkjet-Printed PEDOT:PSS Microelectrodes for Multi-modal Neuroscience.

Transparent microelectrodes that facilitate simultaneous optical and electrophysiological interfacing are desirable tools for neuroscience. Electrodes made from transparent conductors such as graphene and indium tin oxide (ITO) show promise but are often limited by poor interfacial charge-transfer properties. Here, microelectrodes are demonstrated that take advantage of the transparency and volumetric capacitance of the mixed ion-electron conductor Poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Ring-shaped microelectrodes are fabricated by inkjet-printing PEDOT:PSS, encapsulating with Parylene-C, and then exposing a contact site that is much smaller than the microelectrode outer diameter. This unique structure allows the encapsulated portion of the microelectrode volume surrounding the contact site to participate in signal transduction, which reduces impedance and enhances charge storage capacity. While using the same 100 μm diameter contact site, increasing the outer diameter of the encapsulated electrode from 300 to 550 μm reduces the impedance from 294±21 to 98±2 kΩ, respectively, at 1 Hz. Similarly, the charge storage capacity is enhanced from 6 to 21 mC cm-2. The PEDOT:PSS microelectrodes provide a low-haze, high-transmittance optical interface, demonstrating their suitability for optical neuroscience applications. They remain functional after a million 1 V stimulation cycles, up to 600 μA of stimulation current, and more than 1000 mechanical bending cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信