{"title":"通过片段药物设计(FBDD)和分子动力学模拟策略,发现抑制神经氨酸酶重要功能的新型流感特效药物。","authors":"Lotfi Bourougaa, Mebarka Ouassaf, Amneh Shtaiwi","doi":"10.1080/07391102.2023.2251065","DOIUrl":null,"url":null,"abstract":"<p><p>The current work describes a fragment linking methodology to generate new neuraminidase inhibitors. A total number of 28,977 fragments from Zinc 20 have been obtained and screened for neuraminidase receptor affinity. Using Schrödinger software, the highest-scoring 270 fragment hits (with scores greater than -7.6) were subjected to fragment combining to create 100 new molecules. These 100 novel compounds were studied using XP docking to evaluate the molecular interaction modes and their binding affinity to neuraminidase receptor. The top ten molecules were selected, for ADMET, drug-likeness features. Based on these characteristics, the best four developed molecules and Zanamivir were submitted to a molecular dynamics simulation investigation to estimate their dynamics within the neuraminidase receptor using Gromacs software. All MD simulation findings show that the generated complexes are very stable when compared to the clinical inhibitor (Zanamivir). In addition, the four designed neuraminidase inhibitors formed very stable complexes with neuraminidase receptor (with total binding energies ranging from -83.50 to -107.85 Kj/mol) according to the total binding energy calculated by MM-PBSA. For the objective of developing new influenza medications, these novel molecules have the potential to be further evaluated <i>in vitro</i> and <i>in vivo</i> for influenza drug discovery.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9294-9308"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel potent drugs for influenza by inhibiting the vital function of neuraminidase via fragment-based drug design (FBDD) and molecular dynamics simulation strategies.\",\"authors\":\"Lotfi Bourougaa, Mebarka Ouassaf, Amneh Shtaiwi\",\"doi\":\"10.1080/07391102.2023.2251065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current work describes a fragment linking methodology to generate new neuraminidase inhibitors. A total number of 28,977 fragments from Zinc 20 have been obtained and screened for neuraminidase receptor affinity. Using Schrödinger software, the highest-scoring 270 fragment hits (with scores greater than -7.6) were subjected to fragment combining to create 100 new molecules. These 100 novel compounds were studied using XP docking to evaluate the molecular interaction modes and their binding affinity to neuraminidase receptor. The top ten molecules were selected, for ADMET, drug-likeness features. Based on these characteristics, the best four developed molecules and Zanamivir were submitted to a molecular dynamics simulation investigation to estimate their dynamics within the neuraminidase receptor using Gromacs software. All MD simulation findings show that the generated complexes are very stable when compared to the clinical inhibitor (Zanamivir). In addition, the four designed neuraminidase inhibitors formed very stable complexes with neuraminidase receptor (with total binding energies ranging from -83.50 to -107.85 Kj/mol) according to the total binding energy calculated by MM-PBSA. For the objective of developing new influenza medications, these novel molecules have the potential to be further evaluated <i>in vitro</i> and <i>in vivo</i> for influenza drug discovery.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"9294-9308\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2251065\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2251065","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of novel potent drugs for influenza by inhibiting the vital function of neuraminidase via fragment-based drug design (FBDD) and molecular dynamics simulation strategies.
The current work describes a fragment linking methodology to generate new neuraminidase inhibitors. A total number of 28,977 fragments from Zinc 20 have been obtained and screened for neuraminidase receptor affinity. Using Schrödinger software, the highest-scoring 270 fragment hits (with scores greater than -7.6) were subjected to fragment combining to create 100 new molecules. These 100 novel compounds were studied using XP docking to evaluate the molecular interaction modes and their binding affinity to neuraminidase receptor. The top ten molecules were selected, for ADMET, drug-likeness features. Based on these characteristics, the best four developed molecules and Zanamivir were submitted to a molecular dynamics simulation investigation to estimate their dynamics within the neuraminidase receptor using Gromacs software. All MD simulation findings show that the generated complexes are very stable when compared to the clinical inhibitor (Zanamivir). In addition, the four designed neuraminidase inhibitors formed very stable complexes with neuraminidase receptor (with total binding energies ranging from -83.50 to -107.85 Kj/mol) according to the total binding energy calculated by MM-PBSA. For the objective of developing new influenza medications, these novel molecules have the potential to be further evaluated in vitro and in vivo for influenza drug discovery.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.