{"title":"识别关键自噬调节因子beclin 1的分子特征和分子动力学模拟:一种基于计算的方法。","authors":"Sargeet Kaur, Jitendraa Vashistt, Harish Changotra","doi":"10.1080/07391102.2023.2252097","DOIUrl":null,"url":null,"abstract":"<p><p>Beclin 1 is a key autophagy regulator that also plays significant roles in other intracellular processes such as vacuolar protein sorting. Beclin 1 protein functions as a scaffold in the formation of a multiprotein assemblage during autophagy. Beclin 1 is involved in various diseases such as cancers, neurodegenerative and autophagy-related disorders. In this study, we have used various <i>in silico</i> tools to scan beclin 1 at the molecular level to find its molecular signatures. We have predicted and analysed deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of beclin 1 causing alterations in its structure and also affecting its interactions with other proteins. In total, twelve coding region deleterious variants were predicted using sequence-based tools and nine were predicted using various structure-based tools. The molecular dynamics (MD) simulations revealed an altered stability of the native structure due to the introduction of mutations. Destabilization of beclin 1 ECD domain was observed due to nsSNPs W300R and E302K. Beclin 1 deleterious nsSNPs were predicted to show significant effects on beclin 1 interactions with ATG14L1, UVRAG and VPS34 proteins and were also predicted to alter the protein-protein interface of beclin 1 complexes. Additionally, beclin 1 was predicted to have thirty-one potential phosphorylation and three ubiquitination sites. In conclusion, the molecular details of beclin 1 could help in the better understanding of its functioning. The study of nsSNPs and their effect on beclin 1 and its interactions might aid in understanding the basis of anomalies caused due to beclin 1 dysfunction.Communicated by Ramaswamy H. Sarma.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"9691-9704"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of molecular signatures and molecular dynamics simulation of highly deleterious missense variants of key autophagy regulator beclin 1: a computational based approach.\",\"authors\":\"Sargeet Kaur, Jitendraa Vashistt, Harish Changotra\",\"doi\":\"10.1080/07391102.2023.2252097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Beclin 1 is a key autophagy regulator that also plays significant roles in other intracellular processes such as vacuolar protein sorting. Beclin 1 protein functions as a scaffold in the formation of a multiprotein assemblage during autophagy. Beclin 1 is involved in various diseases such as cancers, neurodegenerative and autophagy-related disorders. In this study, we have used various <i>in silico</i> tools to scan beclin 1 at the molecular level to find its molecular signatures. We have predicted and analysed deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of beclin 1 causing alterations in its structure and also affecting its interactions with other proteins. In total, twelve coding region deleterious variants were predicted using sequence-based tools and nine were predicted using various structure-based tools. The molecular dynamics (MD) simulations revealed an altered stability of the native structure due to the introduction of mutations. Destabilization of beclin 1 ECD domain was observed due to nsSNPs W300R and E302K. Beclin 1 deleterious nsSNPs were predicted to show significant effects on beclin 1 interactions with ATG14L1, UVRAG and VPS34 proteins and were also predicted to alter the protein-protein interface of beclin 1 complexes. Additionally, beclin 1 was predicted to have thirty-one potential phosphorylation and three ubiquitination sites. In conclusion, the molecular details of beclin 1 could help in the better understanding of its functioning. The study of nsSNPs and their effect on beclin 1 and its interactions might aid in understanding the basis of anomalies caused due to beclin 1 dysfunction.Communicated by Ramaswamy H. Sarma.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"9691-9704\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2252097\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2252097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Identification of molecular signatures and molecular dynamics simulation of highly deleterious missense variants of key autophagy regulator beclin 1: a computational based approach.
Beclin 1 is a key autophagy regulator that also plays significant roles in other intracellular processes such as vacuolar protein sorting. Beclin 1 protein functions as a scaffold in the formation of a multiprotein assemblage during autophagy. Beclin 1 is involved in various diseases such as cancers, neurodegenerative and autophagy-related disorders. In this study, we have used various in silico tools to scan beclin 1 at the molecular level to find its molecular signatures. We have predicted and analysed deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of beclin 1 causing alterations in its structure and also affecting its interactions with other proteins. In total, twelve coding region deleterious variants were predicted using sequence-based tools and nine were predicted using various structure-based tools. The molecular dynamics (MD) simulations revealed an altered stability of the native structure due to the introduction of mutations. Destabilization of beclin 1 ECD domain was observed due to nsSNPs W300R and E302K. Beclin 1 deleterious nsSNPs were predicted to show significant effects on beclin 1 interactions with ATG14L1, UVRAG and VPS34 proteins and were also predicted to alter the protein-protein interface of beclin 1 complexes. Additionally, beclin 1 was predicted to have thirty-one potential phosphorylation and three ubiquitination sites. In conclusion, the molecular details of beclin 1 could help in the better understanding of its functioning. The study of nsSNPs and their effect on beclin 1 and its interactions might aid in understanding the basis of anomalies caused due to beclin 1 dysfunction.Communicated by Ramaswamy H. Sarma.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.