{"title":"肝细胞癌经动脉化疗栓塞后的生存预测:一种深入的多任务生存分析方法。","authors":"Guo Huang, Huijun Liu, Shu Gong, Yongxin Ge","doi":"10.1007/s41666-023-00139-0","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate prediction of postoperative survival time of patients with Barcelona Clinic Liver Cancer (BCLC) stage B hepatocellular carcinoma (HCC) is important for postoperative health care. Survival analysis is a common method used to predict the occurrence time of events of interest in the medical field. At present, the mainstream survival analysis models, such as the Cox proportional risk model, should make strict assumptions about the potential random process to solve the censored data, thus potentially limiting their application in clinical practice. In this paper, we propose a novel deep multitask survival model (DMSM) to analyze HCC survival data. Specifically, DMSM transforms the traditional survival time prediction problem of patients with HCC into a survival probability prediction problem at multiple time points and applies entropy regularization and ranking loss to optimize a multitask neural network. Compared with the traditional methods of deleting censored data and strong hypothesis, DMSM makes full use of all the information in the censored data but does not need to make any assumption. In addition, we identify the risk factors affecting the prognosis of patients with HCC and visualize the importance of ranking these factors. On the basis of the analysis of a real dataset of patients with BCLC stage B HCC, experimental results on three different validation datasets show that the DMSM achieves competitive performance with concordance index of 0.779, 0.727, and 0.780 and integrated Brier score (IBS) of 0.172, 0.138, and 0.135, respectively. Our DMSM has a comparatively small standard deviation (0.002, 0.002, and 0.003) for IBS of bootstrapping 100 times. The DMSM we proposed can be utilized as an effective survival analysis model and provide an important means for the accurate prediction of postoperative survival time of patients with BCLC stage B HCC.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":"7 3","pages":"332-358"},"PeriodicalIF":5.9000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449707/pdf/","citationCount":"0","resultStr":"{\"title\":\"Survival Prediction After Transarterial Chemoembolization for Hepatocellular Carcinoma: a Deep Multitask Survival Analysis Approach.\",\"authors\":\"Guo Huang, Huijun Liu, Shu Gong, Yongxin Ge\",\"doi\":\"10.1007/s41666-023-00139-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate prediction of postoperative survival time of patients with Barcelona Clinic Liver Cancer (BCLC) stage B hepatocellular carcinoma (HCC) is important for postoperative health care. Survival analysis is a common method used to predict the occurrence time of events of interest in the medical field. At present, the mainstream survival analysis models, such as the Cox proportional risk model, should make strict assumptions about the potential random process to solve the censored data, thus potentially limiting their application in clinical practice. In this paper, we propose a novel deep multitask survival model (DMSM) to analyze HCC survival data. Specifically, DMSM transforms the traditional survival time prediction problem of patients with HCC into a survival probability prediction problem at multiple time points and applies entropy regularization and ranking loss to optimize a multitask neural network. Compared with the traditional methods of deleting censored data and strong hypothesis, DMSM makes full use of all the information in the censored data but does not need to make any assumption. In addition, we identify the risk factors affecting the prognosis of patients with HCC and visualize the importance of ranking these factors. On the basis of the analysis of a real dataset of patients with BCLC stage B HCC, experimental results on three different validation datasets show that the DMSM achieves competitive performance with concordance index of 0.779, 0.727, and 0.780 and integrated Brier score (IBS) of 0.172, 0.138, and 0.135, respectively. Our DMSM has a comparatively small standard deviation (0.002, 0.002, and 0.003) for IBS of bootstrapping 100 times. The DMSM we proposed can be utilized as an effective survival analysis model and provide an important means for the accurate prediction of postoperative survival time of patients with BCLC stage B HCC.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":\"7 3\",\"pages\":\"332-358\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-023-00139-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-023-00139-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Survival Prediction After Transarterial Chemoembolization for Hepatocellular Carcinoma: a Deep Multitask Survival Analysis Approach.
The accurate prediction of postoperative survival time of patients with Barcelona Clinic Liver Cancer (BCLC) stage B hepatocellular carcinoma (HCC) is important for postoperative health care. Survival analysis is a common method used to predict the occurrence time of events of interest in the medical field. At present, the mainstream survival analysis models, such as the Cox proportional risk model, should make strict assumptions about the potential random process to solve the censored data, thus potentially limiting their application in clinical practice. In this paper, we propose a novel deep multitask survival model (DMSM) to analyze HCC survival data. Specifically, DMSM transforms the traditional survival time prediction problem of patients with HCC into a survival probability prediction problem at multiple time points and applies entropy regularization and ranking loss to optimize a multitask neural network. Compared with the traditional methods of deleting censored data and strong hypothesis, DMSM makes full use of all the information in the censored data but does not need to make any assumption. In addition, we identify the risk factors affecting the prognosis of patients with HCC and visualize the importance of ranking these factors. On the basis of the analysis of a real dataset of patients with BCLC stage B HCC, experimental results on three different validation datasets show that the DMSM achieves competitive performance with concordance index of 0.779, 0.727, and 0.780 and integrated Brier score (IBS) of 0.172, 0.138, and 0.135, respectively. Our DMSM has a comparatively small standard deviation (0.002, 0.002, and 0.003) for IBS of bootstrapping 100 times. The DMSM we proposed can be utilized as an effective survival analysis model and provide an important means for the accurate prediction of postoperative survival time of patients with BCLC stage B HCC.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis