Martin Baumgartner, Sai Pavan Kumar Veeranki, Dieter Hayn, Günter Schreier
{"title":"介绍和比较用于隐私保护ECG分类的具有多个数据池的新型分散学习方案。","authors":"Martin Baumgartner, Sai Pavan Kumar Veeranki, Dieter Hayn, Günter Schreier","doi":"10.1007/s41666-023-00142-5","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence and machine learning have led to prominent and spectacular innovations in various scenarios. Application in medicine, however, can be challenging due to privacy concerns and strict legal regulations. Methods that centralize knowledge instead of data could address this issue. In this work, 6 different decentralized machine learning algorithms are applied to 12-lead ECG classification and compared to conventional, centralized machine learning. The results show that state-of-the-art federated learning leads to reasonable losses of classification performance compared to a standard, central model (-0.054 AUROC) while providing a significantly higher level of privacy. A proposed weighted variant of federated learning (-0.049 AUROC) and an ensemble (-0.035 AUROC) outperformed the standard federated learning algorithm. Overall, considering multiple metrics, the novel batch-wise sequential learning scheme performed best (-0.036 AUROC to baseline). Although, the technical aspects of implementing them in a real-world application are to be carefully considered, the described algorithms constitute a way forward towards preserving-preserving AI in medicine.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":"7 3","pages":"291-312"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449753/pdf/","citationCount":"0","resultStr":"{\"title\":\"Introduction and Comparison of Novel Decentral Learning Schemes with Multiple Data Pools for Privacy-Preserving ECG Classification.\",\"authors\":\"Martin Baumgartner, Sai Pavan Kumar Veeranki, Dieter Hayn, Günter Schreier\",\"doi\":\"10.1007/s41666-023-00142-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence and machine learning have led to prominent and spectacular innovations in various scenarios. Application in medicine, however, can be challenging due to privacy concerns and strict legal regulations. Methods that centralize knowledge instead of data could address this issue. In this work, 6 different decentralized machine learning algorithms are applied to 12-lead ECG classification and compared to conventional, centralized machine learning. The results show that state-of-the-art federated learning leads to reasonable losses of classification performance compared to a standard, central model (-0.054 AUROC) while providing a significantly higher level of privacy. A proposed weighted variant of federated learning (-0.049 AUROC) and an ensemble (-0.035 AUROC) outperformed the standard federated learning algorithm. Overall, considering multiple metrics, the novel batch-wise sequential learning scheme performed best (-0.036 AUROC to baseline). Although, the technical aspects of implementing them in a real-world application are to be carefully considered, the described algorithms constitute a way forward towards preserving-preserving AI in medicine.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":\"7 3\",\"pages\":\"291-312\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449753/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-023-00142-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-023-00142-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Introduction and Comparison of Novel Decentral Learning Schemes with Multiple Data Pools for Privacy-Preserving ECG Classification.
Artificial intelligence and machine learning have led to prominent and spectacular innovations in various scenarios. Application in medicine, however, can be challenging due to privacy concerns and strict legal regulations. Methods that centralize knowledge instead of data could address this issue. In this work, 6 different decentralized machine learning algorithms are applied to 12-lead ECG classification and compared to conventional, centralized machine learning. The results show that state-of-the-art federated learning leads to reasonable losses of classification performance compared to a standard, central model (-0.054 AUROC) while providing a significantly higher level of privacy. A proposed weighted variant of federated learning (-0.049 AUROC) and an ensemble (-0.035 AUROC) outperformed the standard federated learning algorithm. Overall, considering multiple metrics, the novel batch-wise sequential learning scheme performed best (-0.036 AUROC to baseline). Although, the technical aspects of implementing them in a real-world application are to be carefully considered, the described algorithms constitute a way forward towards preserving-preserving AI in medicine.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis