{"title":"影响可穿戴设备继续使用的因素和设计特征。","authors":"Omar El-Gayar, Ahmed Elnoshokaty","doi":"10.1007/s41666-023-00135-4","DOIUrl":null,"url":null,"abstract":"<p><p>The initial healthy uptake of wearable devices is not necessarily accompanied by sustained or continued use. Accordingly, this study investigates the factors influencing the continuous use of wearable devices with a particular emphasis on design features. We complemented the expectation-confirmation model (ECM) theoretical foundation with various design features such as trust, readability, dialogue support, personalization, device battery, appeal, and social support. The study employs a simultaneous mixed method research design denoted as QUANT + qual. The quantitative analysis leverages partial least squares structural equation modeling (PLS-SEM) using survey data collected from wearable device users. The qualitative analysis complements the quantitative focus of the research by providing insights into the results obtained from the quantitative analysis. We found that subjects tend to use wearables daily (60%) or several times a week (33%), and 91% plan to use them even more. Subjects indicated multiple usages for wearables. Most subjects were using wearables for healthcare and wellness (61%) or sports and fitness (54%) and had smartwatches wearable type (74%). The model explains 24.1% (<i>p</i> < 0.01) of the variance of continued intention to use. As a theoretical contribution, the findings support using the ECM as a theoretical foundation for explaining the continued use of wearables. Partial least squares (PLS) and qualitative data analysis highlight the relative importance that wearable users place on perceived usefulness. Most notable are tracking functions and design features such as device battery, integration with other apps/devices, dialogue support, and appeal.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":"7 3","pages":"359-385"},"PeriodicalIF":5.9000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Factors and Design Features Influencing the Continued Use of Wearable Devices.\",\"authors\":\"Omar El-Gayar, Ahmed Elnoshokaty\",\"doi\":\"10.1007/s41666-023-00135-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The initial healthy uptake of wearable devices is not necessarily accompanied by sustained or continued use. Accordingly, this study investigates the factors influencing the continuous use of wearable devices with a particular emphasis on design features. We complemented the expectation-confirmation model (ECM) theoretical foundation with various design features such as trust, readability, dialogue support, personalization, device battery, appeal, and social support. The study employs a simultaneous mixed method research design denoted as QUANT + qual. The quantitative analysis leverages partial least squares structural equation modeling (PLS-SEM) using survey data collected from wearable device users. The qualitative analysis complements the quantitative focus of the research by providing insights into the results obtained from the quantitative analysis. We found that subjects tend to use wearables daily (60%) or several times a week (33%), and 91% plan to use them even more. Subjects indicated multiple usages for wearables. Most subjects were using wearables for healthcare and wellness (61%) or sports and fitness (54%) and had smartwatches wearable type (74%). The model explains 24.1% (<i>p</i> < 0.01) of the variance of continued intention to use. As a theoretical contribution, the findings support using the ECM as a theoretical foundation for explaining the continued use of wearables. Partial least squares (PLS) and qualitative data analysis highlight the relative importance that wearable users place on perceived usefulness. Most notable are tracking functions and design features such as device battery, integration with other apps/devices, dialogue support, and appeal.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":\"7 3\",\"pages\":\"359-385\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-023-00135-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-023-00135-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Factors and Design Features Influencing the Continued Use of Wearable Devices.
The initial healthy uptake of wearable devices is not necessarily accompanied by sustained or continued use. Accordingly, this study investigates the factors influencing the continuous use of wearable devices with a particular emphasis on design features. We complemented the expectation-confirmation model (ECM) theoretical foundation with various design features such as trust, readability, dialogue support, personalization, device battery, appeal, and social support. The study employs a simultaneous mixed method research design denoted as QUANT + qual. The quantitative analysis leverages partial least squares structural equation modeling (PLS-SEM) using survey data collected from wearable device users. The qualitative analysis complements the quantitative focus of the research by providing insights into the results obtained from the quantitative analysis. We found that subjects tend to use wearables daily (60%) or several times a week (33%), and 91% plan to use them even more. Subjects indicated multiple usages for wearables. Most subjects were using wearables for healthcare and wellness (61%) or sports and fitness (54%) and had smartwatches wearable type (74%). The model explains 24.1% (p < 0.01) of the variance of continued intention to use. As a theoretical contribution, the findings support using the ECM as a theoretical foundation for explaining the continued use of wearables. Partial least squares (PLS) and qualitative data analysis highlight the relative importance that wearable users place on perceived usefulness. Most notable are tracking functions and design features such as device battery, integration with other apps/devices, dialogue support, and appeal.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis