Büşra Özkan Kök, Yasemin Celik Altunoglu, Ali Burak Öncül, Abdulkadir Karaci, Mehmet Cengiz Baloglu
{"title":"扩增素基因家族数据库:植物扩增素多基因家族的综合生物信息学资源。","authors":"Büşra Özkan Kök, Yasemin Celik Altunoglu, Ali Burak Öncül, Abdulkadir Karaci, Mehmet Cengiz Baloglu","doi":"10.1142/S0219720023500154","DOIUrl":null,"url":null,"abstract":"<p><p>Expansins, which are plant cell wall loosening proteins associated with cell growth, have been identified as a multigene family. Plant expansin proteins are an important family that functions in cell growth and many of developmental processes including wall relaxation, fruit softening, abscission, seed germination, mycorrhiza and root nodule formation, biotic and abiotic stress resistance, invasion of pollen tube stigma and organogenesis. In addition, it is thought that increasing the efficiency of plant expansin genes in plants plays a significant role, especially in the production of secondary bioethanol. When the studies on the expansin genes are examined, it is seen that the expansin genes are a significant gene family in the cell wall expansion mechanism. Therefore, understanding the efficacy of expansin genes is of great importance. Considering the importance of this multigene family, we aimed to create a comprehensively informed database of plant expansin proteins and their properties. The expansin gene family database provides comprehensive online data for the expansin gene family members in the plants. We have designed a new website accessible to the public, including expansin gene family members in 70 plants and their features including gene, coding and peptide sequences, chromosomal location, amino acid length, molecular weight, stability, conserved motif and domain structure and predicted three-dimensional architecture. Furthermore, a deep learning system was developed to detect unknown genes belonging to the expansin gene family. In addition, we provided the blast process within the website by establishing a connection to the NCBI BLAST site in the tools section. Thus, the expansin gene family database becomes a useful database for researchers that enables access to all datasets simultaneously with its user-friendly interface. Our server can be reached freely at the following link (http://www.expansingenefamily.com/).</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 3","pages":"2350015"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansin gene family database: A comprehensive bioinformatics resource for plant expansin multigene family.\",\"authors\":\"Büşra Özkan Kök, Yasemin Celik Altunoglu, Ali Burak Öncül, Abdulkadir Karaci, Mehmet Cengiz Baloglu\",\"doi\":\"10.1142/S0219720023500154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expansins, which are plant cell wall loosening proteins associated with cell growth, have been identified as a multigene family. Plant expansin proteins are an important family that functions in cell growth and many of developmental processes including wall relaxation, fruit softening, abscission, seed germination, mycorrhiza and root nodule formation, biotic and abiotic stress resistance, invasion of pollen tube stigma and organogenesis. In addition, it is thought that increasing the efficiency of plant expansin genes in plants plays a significant role, especially in the production of secondary bioethanol. When the studies on the expansin genes are examined, it is seen that the expansin genes are a significant gene family in the cell wall expansion mechanism. Therefore, understanding the efficacy of expansin genes is of great importance. Considering the importance of this multigene family, we aimed to create a comprehensively informed database of plant expansin proteins and their properties. The expansin gene family database provides comprehensive online data for the expansin gene family members in the plants. We have designed a new website accessible to the public, including expansin gene family members in 70 plants and their features including gene, coding and peptide sequences, chromosomal location, amino acid length, molecular weight, stability, conserved motif and domain structure and predicted three-dimensional architecture. Furthermore, a deep learning system was developed to detect unknown genes belonging to the expansin gene family. In addition, we provided the blast process within the website by establishing a connection to the NCBI BLAST site in the tools section. Thus, the expansin gene family database becomes a useful database for researchers that enables access to all datasets simultaneously with its user-friendly interface. Our server can be reached freely at the following link (http://www.expansingenefamily.com/).</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"21 3\",\"pages\":\"2350015\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500154\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500154","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Expansin gene family database: A comprehensive bioinformatics resource for plant expansin multigene family.
Expansins, which are plant cell wall loosening proteins associated with cell growth, have been identified as a multigene family. Plant expansin proteins are an important family that functions in cell growth and many of developmental processes including wall relaxation, fruit softening, abscission, seed germination, mycorrhiza and root nodule formation, biotic and abiotic stress resistance, invasion of pollen tube stigma and organogenesis. In addition, it is thought that increasing the efficiency of plant expansin genes in plants plays a significant role, especially in the production of secondary bioethanol. When the studies on the expansin genes are examined, it is seen that the expansin genes are a significant gene family in the cell wall expansion mechanism. Therefore, understanding the efficacy of expansin genes is of great importance. Considering the importance of this multigene family, we aimed to create a comprehensively informed database of plant expansin proteins and their properties. The expansin gene family database provides comprehensive online data for the expansin gene family members in the plants. We have designed a new website accessible to the public, including expansin gene family members in 70 plants and their features including gene, coding and peptide sequences, chromosomal location, amino acid length, molecular weight, stability, conserved motif and domain structure and predicted three-dimensional architecture. Furthermore, a deep learning system was developed to detect unknown genes belonging to the expansin gene family. In addition, we provided the blast process within the website by establishing a connection to the NCBI BLAST site in the tools section. Thus, the expansin gene family database becomes a useful database for researchers that enables access to all datasets simultaneously with its user-friendly interface. Our server can be reached freely at the following link (http://www.expansingenefamily.com/).
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.