Barbara Spolaore, Luca Secco, Giulia Rocca, Guidalberto Manfioletti, Giorgio Arrigoni, Riccardo Sgarra
{"title":"蛋白质组学工具用于研究内在无序蛋白的磷酸化。","authors":"Barbara Spolaore, Luca Secco, Giulia Rocca, Guidalberto Manfioletti, Giorgio Arrigoni, Riccardo Sgarra","doi":"10.1080/14789450.2023.2217359","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.</p><p><strong>Areas covered: </strong>We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility).</p><p><strong>Expert opinion: </strong>There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":"20 4-6","pages":"93-107"},"PeriodicalIF":3.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic tools to study phosphorylation of intrinsically disordered proteins.\",\"authors\":\"Barbara Spolaore, Luca Secco, Giulia Rocca, Guidalberto Manfioletti, Giorgio Arrigoni, Riccardo Sgarra\",\"doi\":\"10.1080/14789450.2023.2217359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.</p><p><strong>Areas covered: </strong>We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility).</p><p><strong>Expert opinion: </strong>There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.</p>\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":\"20 4-6\",\"pages\":\"93-107\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2023.2217359\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2023.2217359","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Proteomic tools to study phosphorylation of intrinsically disordered proteins.
Introduction: Intrinsically disordered proteins (IDPs) represent a family of proteins that lack secondary or tertiary structure. IDPs are hubs in interaction networks, participate in liquid-liquid phase separation processes, and drive the formation of proteinaceous membrane-less organelles. Their unfolded structure makes them particularly prone to post-translational modifications (PTMs) that play key functional modulatory roles.
Areas covered: We discuss different analytical approaches to study phosphorylation of IDPs starting from methods for IDP enrichment (strong acid extractions and heat-based pre-fractionation), strategies to enrich and map phosphopeptides/proteins, and mass spectrometry-based tools to study the phosphorylation-dependent conformational alterations of IDPs (limited proteolysis, HDX, chemical cross-linking, covalent labeling, and ion mobility).
Expert opinion: There is a growing interest in IDPs and their PTMs since they are involved in several diseases. The intrinsic disorder could be exploited to facilitate purification and synthetic production of IDPs taking full advantage of those structural mass-spectrometry-based methods that can be used to investigate IDPs and their phospho-dependent conformational alterations. The diffusion and implementation of mass spectrometers with ion mobility devices and electron transfer dissociation capabilities could be key-elements for increasing information on IDP biology.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.