Ragai Edward Matta, Stephanie Knapp Giacaman, Marco Wiesmueller, Rainer Lutz, Michael Uder, Manfred Wichmann, Anna Seidel
{"title":"多层CT和锥形束CT三维虚拟模型中氧化锆和钛植入物伪影的定量分析:扫描方案重要吗?","authors":"Ragai Edward Matta, Stephanie Knapp Giacaman, Marco Wiesmueller, Rainer Lutz, Michael Uder, Manfred Wichmann, Anna Seidel","doi":"10.1259/dmfr.20230275","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Artefacts from dental implants in three-dimensional (3D) imaging may lead to incorrect representation of anatomical dimensions and impede virtual planning in navigated implantology. The aim of this study was quantitative assessment of artefacts in 3D STL models from cone beam CT (CBCT) and multislice CT (MSCT) using different scanning protocols and titanium-zirconium (Ti-Zr) and zirconium (ZrO<sub>2</sub>) implant materials.</p><p><strong>Methods: </strong>Three ZrO<sub>2</sub> and three Ti-Zr implants were respectively placed in the mandibles of two fresh human specimens. Before (baseline) and after implant placement, 3D digital imaging scans were performed (10 repetitions per timepoint: voxel size 0.2 mm³ and 0.3 mm³ for CBCT; 80 and 140 kV in MSCT). DICOM data were converted into 3D STL models and evaluated in computer-aided design software. After precise merging of the baseline and post-op models, the surface deviation was calculated, representing the extent of artefacts in the 3D models.</p><p><strong>Results: </strong>Compared with baseline, ZrO<sub>2</sub> emitted 36.5-37.3% (±0.6-0.8) artefacts in the CBCT and 39.2-50.2% (±0.5-1.2) in the MSCT models. Ti-Zr implants produced 4.1-7.1% (±0.3-3.0) artefacts in CBCT and 5.4-15.7% (±0.5-1.3) in MSCT. Significantly more artefacts were found in the MSCT <i>vs</i> CBCT models for both implant materials (<i>p</i> < 0.05). Significantly fewer artefacts were visible in the 3D models from scans with higher kilovolts in MSCT and smaller voxel size in CBCT.</p><p><strong>Conclusions: </strong>Among the four applied protocols, the lowest artefact proportion of ZrO<sub>2</sub> and Ti-Zr implants in STL models was observed with CBCT and the 0.3 mm³ voxel size.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"20230275"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968770/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of zirconia and titanium implant artefacts in three-dimensional virtual models of multi-slice CT and cone beam CT: does scan protocol matter?\",\"authors\":\"Ragai Edward Matta, Stephanie Knapp Giacaman, Marco Wiesmueller, Rainer Lutz, Michael Uder, Manfred Wichmann, Anna Seidel\",\"doi\":\"10.1259/dmfr.20230275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Artefacts from dental implants in three-dimensional (3D) imaging may lead to incorrect representation of anatomical dimensions and impede virtual planning in navigated implantology. The aim of this study was quantitative assessment of artefacts in 3D STL models from cone beam CT (CBCT) and multislice CT (MSCT) using different scanning protocols and titanium-zirconium (Ti-Zr) and zirconium (ZrO<sub>2</sub>) implant materials.</p><p><strong>Methods: </strong>Three ZrO<sub>2</sub> and three Ti-Zr implants were respectively placed in the mandibles of two fresh human specimens. Before (baseline) and after implant placement, 3D digital imaging scans were performed (10 repetitions per timepoint: voxel size 0.2 mm³ and 0.3 mm³ for CBCT; 80 and 140 kV in MSCT). DICOM data were converted into 3D STL models and evaluated in computer-aided design software. After precise merging of the baseline and post-op models, the surface deviation was calculated, representing the extent of artefacts in the 3D models.</p><p><strong>Results: </strong>Compared with baseline, ZrO<sub>2</sub> emitted 36.5-37.3% (±0.6-0.8) artefacts in the CBCT and 39.2-50.2% (±0.5-1.2) in the MSCT models. Ti-Zr implants produced 4.1-7.1% (±0.3-3.0) artefacts in CBCT and 5.4-15.7% (±0.5-1.3) in MSCT. Significantly more artefacts were found in the MSCT <i>vs</i> CBCT models for both implant materials (<i>p</i> < 0.05). Significantly fewer artefacts were visible in the 3D models from scans with higher kilovolts in MSCT and smaller voxel size in CBCT.</p><p><strong>Conclusions: </strong>Among the four applied protocols, the lowest artefact proportion of ZrO<sub>2</sub> and Ti-Zr implants in STL models was observed with CBCT and the 0.3 mm³ voxel size.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\" \",\"pages\":\"20230275\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10968770/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1259/dmfr.20230275\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1259/dmfr.20230275","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Quantitative analysis of zirconia and titanium implant artefacts in three-dimensional virtual models of multi-slice CT and cone beam CT: does scan protocol matter?
Objectives: Artefacts from dental implants in three-dimensional (3D) imaging may lead to incorrect representation of anatomical dimensions and impede virtual planning in navigated implantology. The aim of this study was quantitative assessment of artefacts in 3D STL models from cone beam CT (CBCT) and multislice CT (MSCT) using different scanning protocols and titanium-zirconium (Ti-Zr) and zirconium (ZrO2) implant materials.
Methods: Three ZrO2 and three Ti-Zr implants were respectively placed in the mandibles of two fresh human specimens. Before (baseline) and after implant placement, 3D digital imaging scans were performed (10 repetitions per timepoint: voxel size 0.2 mm³ and 0.3 mm³ for CBCT; 80 and 140 kV in MSCT). DICOM data were converted into 3D STL models and evaluated in computer-aided design software. After precise merging of the baseline and post-op models, the surface deviation was calculated, representing the extent of artefacts in the 3D models.
Results: Compared with baseline, ZrO2 emitted 36.5-37.3% (±0.6-0.8) artefacts in the CBCT and 39.2-50.2% (±0.5-1.2) in the MSCT models. Ti-Zr implants produced 4.1-7.1% (±0.3-3.0) artefacts in CBCT and 5.4-15.7% (±0.5-1.3) in MSCT. Significantly more artefacts were found in the MSCT vs CBCT models for both implant materials (p < 0.05). Significantly fewer artefacts were visible in the 3D models from scans with higher kilovolts in MSCT and smaller voxel size in CBCT.
Conclusions: Among the four applied protocols, the lowest artefact proportion of ZrO2 and Ti-Zr implants in STL models was observed with CBCT and the 0.3 mm³ voxel size.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X