针对医疗保健提供者分析的测试特定漏斗图,利用个人和汇总级别的信息。

IF 1.6 Q3 HEALTH CARE SCIENCES & SERVICES
Wenbo Wu, Jonathan P Kuriakose, Wenjing Weng, Richard E Burney, Kevin He
{"title":"针对医疗保健提供者分析的测试特定漏斗图,利用个人和汇总级别的信息。","authors":"Wenbo Wu,&nbsp;Jonathan P Kuriakose,&nbsp;Wenjing Weng,&nbsp;Richard E Burney,&nbsp;Kevin He","doi":"10.1007/s10742-022-00285-9","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to applications in meta-analysis, funnel plots have emerged as an effective graphical tool for visualizing the detection of health care providers with unusual performance. Although there already exist a variety of approaches to producing funnel plots in the literature of provider profiling, limited attention has been paid to elucidating the critical relationship between funnel plots and hypothesis testing. Within the framework of generalized linear models, here we establish methodological guidelines for creating funnel plots specific to the statistical tests of interest. Moreover, we show that the test-specific funnel plots can be created merely leveraging summary statistics instead of individual-level information. This appealing feature inhibits the leak of protected health information and reduces the cost of inter-institutional data transmission. Two data examples, one for surgical patients from Michigan hospitals and the other for Medicare-certified dialysis facilities, demonstrate the applicability to different types of providers and outcomes with either individual- or summary-level information.</p>","PeriodicalId":45600,"journal":{"name":"Health Services and Outcomes Research Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449097/pdf/nihms-1868840.pdf","citationCount":"1","resultStr":"{\"title\":\"Test-specific funnel plots for healthcare provider profiling leveraging individual- and summary-level information.\",\"authors\":\"Wenbo Wu,&nbsp;Jonathan P Kuriakose,&nbsp;Wenjing Weng,&nbsp;Richard E Burney,&nbsp;Kevin He\",\"doi\":\"10.1007/s10742-022-00285-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In addition to applications in meta-analysis, funnel plots have emerged as an effective graphical tool for visualizing the detection of health care providers with unusual performance. Although there already exist a variety of approaches to producing funnel plots in the literature of provider profiling, limited attention has been paid to elucidating the critical relationship between funnel plots and hypothesis testing. Within the framework of generalized linear models, here we establish methodological guidelines for creating funnel plots specific to the statistical tests of interest. Moreover, we show that the test-specific funnel plots can be created merely leveraging summary statistics instead of individual-level information. This appealing feature inhibits the leak of protected health information and reduces the cost of inter-institutional data transmission. Two data examples, one for surgical patients from Michigan hospitals and the other for Medicare-certified dialysis facilities, demonstrate the applicability to different types of providers and outcomes with either individual- or summary-level information.</p>\",\"PeriodicalId\":45600,\"journal\":{\"name\":\"Health Services and Outcomes Research Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449097/pdf/nihms-1868840.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Services and Outcomes Research Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10742-022-00285-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services and Outcomes Research Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-022-00285-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

摘要

除了在元分析中的应用之外,漏斗图已经成为一种有效的图形工具,用于可视化检测具有不寻常表现的医疗保健提供者。虽然在提供者分析的文献中已经存在多种方法来生成漏斗图,但对于阐明漏斗图和假设检验之间的关键关系的关注有限。在广义线性模型的框架内,我们建立了创建漏斗图的方法学指导方针,具体到感兴趣的统计检验。此外,我们表明,特定于测试的漏斗图可以仅仅利用汇总统计而不是个人层面的信息来创建。这一吸引人的特性可防止受保护的健康信息泄露,并降低机构间数据传输的成本。两个数据示例,一个来自密歇根医院的手术患者,另一个来自医疗保险认证的透析设施,证明了不同类型的提供者和结果的适用性,无论是个人还是摘要级别的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test-specific funnel plots for healthcare provider profiling leveraging individual- and summary-level information.

In addition to applications in meta-analysis, funnel plots have emerged as an effective graphical tool for visualizing the detection of health care providers with unusual performance. Although there already exist a variety of approaches to producing funnel plots in the literature of provider profiling, limited attention has been paid to elucidating the critical relationship between funnel plots and hypothesis testing. Within the framework of generalized linear models, here we establish methodological guidelines for creating funnel plots specific to the statistical tests of interest. Moreover, we show that the test-specific funnel plots can be created merely leveraging summary statistics instead of individual-level information. This appealing feature inhibits the leak of protected health information and reduces the cost of inter-institutional data transmission. Two data examples, one for surgical patients from Michigan hospitals and the other for Medicare-certified dialysis facilities, demonstrate the applicability to different types of providers and outcomes with either individual- or summary-level information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Services and Outcomes Research Methodology
Health Services and Outcomes Research Methodology HEALTH CARE SCIENCES & SERVICES-
CiteScore
3.40
自引率
6.70%
发文量
28
期刊介绍: The journal reflects the multidisciplinary nature of the field of health services and outcomes research. It addresses the needs of multiple, interlocking communities, including methodologists in statistics, econometrics, social and behavioral sciences; designers and analysts of health policy and health services research projects; and health care providers and policy makers who need to properly understand and evaluate the results of published research. The journal strives to enhance the level of methodologic rigor in health services and outcomes research and contributes to the development of methodologic standards in the field. In pursuing its main objective, the journal also provides a meeting ground for researchers from a number of traditional disciplines and fosters the development of new quantitative, qualitative, and mixed methods by statisticians, econometricians, health services researchers, and methodologists in other fields. Health Services and Outcomes Research Methodology publishes: Research papers on quantitative, qualitative, and mixed methods; Case Studies describing applications of quantitative and qualitative methodology in health services and outcomes research; Review Articles synthesizing and popularizing methodologic developments; Tutorials; Articles on computational issues and software reviews; Book reviews; and Notices. Special issues will be devoted to papers presented at important workshops and conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信