Mateusz Koberda, Andrzej Skorek, Paweł Kłosowski, Marcin Żmuda-Trzebiatowski, Krzysztof Żerdzicki, Paweł Lemski, Urszula Stodolska-Koberda
{"title":"直接撞击致眼球损伤的数值与临床分析。","authors":"Mateusz Koberda, Andrzej Skorek, Paweł Kłosowski, Marcin Żmuda-Trzebiatowski, Krzysztof Żerdzicki, Paweł Lemski, Urszula Stodolska-Koberda","doi":"10.13075/ijomeh.1896.01913","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The objective of this study was to develop a numerical model of the eyeball and orbit to simulate a blunt injury to the eyeball leading to its rupture, as well as to conduct a comparative analysis of the results obtained using the finite element method against the clinical material concerning patients who had suffered an eyeball rupture due to a blunt force trauma.</p><p><strong>Material and methods: </strong>Using available sclera biometric and strength data, a numerical model of the eyeball, the orbital contents, and the bony walls were developed from the ground up. Then, 8 different blunt force injury scenarios were simulated. The results of numerical analyses made it possible to identify possible locations and configurations of scleral rupture. The obtained results were compared against the clinical picture of patients hospitalized at the Department of Ophtalmology, Medical University of Gdańsk in 2010-2016 due to isolated blunt force trauma to the eyeball.</p><p><strong>Results: </strong>It has been demonstrated that the extent of damage observed on the numerical model that indicated a possible location of eyeball rupture did not differ from the clinically observed configurations of the scleral injuries. It has been found that the direction of the impact applied determines the location of eyeball rupture. Most often the rupture occurs at the point opposite to the clock-hour/positions of the impact application. The eyeball rupture occurs in the first 7-8 ms after the contact with the striking rigid object. It has been established that the injuries most often affected the upper sectors of the eyeball. Men are definitely more likely to sustain such injuries. Eyeball ruptures lead to significant impairment of visual acuity.</p><p><strong>Conclusions: </strong>This study may contribute to a better understanding of injury mechanisms and better treatment planning. It may also contribute to the development of eyeball protection methods for employees exposed to ocular injuries. Int J Occup Med Environ Health. 2023;36(2):263-73.</p>","PeriodicalId":14173,"journal":{"name":"International journal of occupational medicine and environmental health","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/7e/ijomeh-36-263.PMC10464811.pdf","citationCount":"1","resultStr":"{\"title\":\"Numerical and clinical analysis of an eyeball injuries under direct impact.\",\"authors\":\"Mateusz Koberda, Andrzej Skorek, Paweł Kłosowski, Marcin Żmuda-Trzebiatowski, Krzysztof Żerdzicki, Paweł Lemski, Urszula Stodolska-Koberda\",\"doi\":\"10.13075/ijomeh.1896.01913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The objective of this study was to develop a numerical model of the eyeball and orbit to simulate a blunt injury to the eyeball leading to its rupture, as well as to conduct a comparative analysis of the results obtained using the finite element method against the clinical material concerning patients who had suffered an eyeball rupture due to a blunt force trauma.</p><p><strong>Material and methods: </strong>Using available sclera biometric and strength data, a numerical model of the eyeball, the orbital contents, and the bony walls were developed from the ground up. Then, 8 different blunt force injury scenarios were simulated. The results of numerical analyses made it possible to identify possible locations and configurations of scleral rupture. The obtained results were compared against the clinical picture of patients hospitalized at the Department of Ophtalmology, Medical University of Gdańsk in 2010-2016 due to isolated blunt force trauma to the eyeball.</p><p><strong>Results: </strong>It has been demonstrated that the extent of damage observed on the numerical model that indicated a possible location of eyeball rupture did not differ from the clinically observed configurations of the scleral injuries. It has been found that the direction of the impact applied determines the location of eyeball rupture. Most often the rupture occurs at the point opposite to the clock-hour/positions of the impact application. The eyeball rupture occurs in the first 7-8 ms after the contact with the striking rigid object. It has been established that the injuries most often affected the upper sectors of the eyeball. Men are definitely more likely to sustain such injuries. Eyeball ruptures lead to significant impairment of visual acuity.</p><p><strong>Conclusions: </strong>This study may contribute to a better understanding of injury mechanisms and better treatment planning. It may also contribute to the development of eyeball protection methods for employees exposed to ocular injuries. Int J Occup Med Environ Health. 2023;36(2):263-73.</p>\",\"PeriodicalId\":14173,\"journal\":{\"name\":\"International journal of occupational medicine and environmental health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/7e/ijomeh-36-263.PMC10464811.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of occupational medicine and environmental health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.13075/ijomeh.1896.01913\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of occupational medicine and environmental health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.13075/ijomeh.1896.01913","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Numerical and clinical analysis of an eyeball injuries under direct impact.
Objectives: The objective of this study was to develop a numerical model of the eyeball and orbit to simulate a blunt injury to the eyeball leading to its rupture, as well as to conduct a comparative analysis of the results obtained using the finite element method against the clinical material concerning patients who had suffered an eyeball rupture due to a blunt force trauma.
Material and methods: Using available sclera biometric and strength data, a numerical model of the eyeball, the orbital contents, and the bony walls were developed from the ground up. Then, 8 different blunt force injury scenarios were simulated. The results of numerical analyses made it possible to identify possible locations and configurations of scleral rupture. The obtained results were compared against the clinical picture of patients hospitalized at the Department of Ophtalmology, Medical University of Gdańsk in 2010-2016 due to isolated blunt force trauma to the eyeball.
Results: It has been demonstrated that the extent of damage observed on the numerical model that indicated a possible location of eyeball rupture did not differ from the clinically observed configurations of the scleral injuries. It has been found that the direction of the impact applied determines the location of eyeball rupture. Most often the rupture occurs at the point opposite to the clock-hour/positions of the impact application. The eyeball rupture occurs in the first 7-8 ms after the contact with the striking rigid object. It has been established that the injuries most often affected the upper sectors of the eyeball. Men are definitely more likely to sustain such injuries. Eyeball ruptures lead to significant impairment of visual acuity.
Conclusions: This study may contribute to a better understanding of injury mechanisms and better treatment planning. It may also contribute to the development of eyeball protection methods for employees exposed to ocular injuries. Int J Occup Med Environ Health. 2023;36(2):263-73.
期刊介绍:
The Journal is dedicated to present the contemporary research in occupational and environmental health from all over the world. It publishes works concerning: occupational and environmental: medicine, epidemiology, hygiene and toxicology; work physiology and ergonomics, musculoskeletal problems; psychosocial factors at work, work-related mental problems, aging, work ability and return to work; working hours, shift work; reproductive factors and endocrine disruptors; radiation, ionizing and non-ionizing health effects; agricultural hazards; work safety and injury and occupational health service; climate change and its effects on health; omics, genetics and epigenetics in occupational and environmental health; health effects of exposure to nanoparticles and nanotechnology products; human biomarkers in occupational and environmental health, intervention studies, clinical sciences’ achievements with potential to improve occupational and environmental health.