在随机设计下,凸优化和非凸优化都是噪声盲反褶积的极小-最优解。

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY
Yuxin Chen, Jianqing Fan, Bingyan Wang, Yuling Yan
{"title":"在随机设计下,凸优化和非凸优化都是噪声盲反褶积的极小-最优解。","authors":"Yuxin Chen,&nbsp;Jianqing Fan,&nbsp;Bingyan Wang,&nbsp;Yuling Yan","doi":"10.1080/01621459.2021.1956501","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear systems of equations under two different designs (i.e. a sort of random Fourier design and Gaussian design). Despite the wide applicability, the theoretical understanding about these two paradigms remains largely inadequate in the presence of random noise. The current paper makes two contributions by demonstrating that: (1) a two-stage nonconvex algorithm attains minimax-optimal accuracy within a logarithmic number of iterations, and (2) convex relaxation also achieves minimax-optimal statistical accuracy vis-à-vis random noise. Both results significantly improve upon the state-of-the-art theoretical guarantees.</p>","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"118 542","pages":"858-868"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01621459.2021.1956501","citationCount":"13","resultStr":"{\"title\":\"Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution under Random Designs.\",\"authors\":\"Yuxin Chen,&nbsp;Jianqing Fan,&nbsp;Bingyan Wang,&nbsp;Yuling Yan\",\"doi\":\"10.1080/01621459.2021.1956501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear systems of equations under two different designs (i.e. a sort of random Fourier design and Gaussian design). Despite the wide applicability, the theoretical understanding about these two paradigms remains largely inadequate in the presence of random noise. The current paper makes two contributions by demonstrating that: (1) a two-stage nonconvex algorithm attains minimax-optimal accuracy within a logarithmic number of iterations, and (2) convex relaxation also achieves minimax-optimal statistical accuracy vis-à-vis random noise. Both results significantly improve upon the state-of-the-art theoretical guarantees.</p>\",\"PeriodicalId\":17227,\"journal\":{\"name\":\"Journal of the American Statistical Association\",\"volume\":\"118 542\",\"pages\":\"858-868\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01621459.2021.1956501\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Statistical Association\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01621459.2021.1956501\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2021.1956501","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 13

摘要

我们研究了在两种不同设计(即一种随机傅立叶设计和高斯设计)下求解双线性方程组的凸松弛和非凸优化的有效性。尽管这两种范式具有广泛的适用性,但在随机噪声存在的情况下,对这两种范式的理论理解仍存在很大的不足。本文通过证明:(1)两阶段非凸算法在对数迭代次数内达到最小最大最优精度,(2)凸松弛在-à-vis随机噪声下也达到最小最大最优统计精度。这两个结果都大大提高了最先进的理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution under Random Designs.

We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear systems of equations under two different designs (i.e. a sort of random Fourier design and Gaussian design). Despite the wide applicability, the theoretical understanding about these two paradigms remains largely inadequate in the presence of random noise. The current paper makes two contributions by demonstrating that: (1) a two-stage nonconvex algorithm attains minimax-optimal accuracy within a logarithmic number of iterations, and (2) convex relaxation also achieves minimax-optimal statistical accuracy vis-à-vis random noise. Both results significantly improve upon the state-of-the-art theoretical guarantees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信