在生物系统的集体运动中等级线的出现。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
James M Greene, Eitan Tadmor, Ming Zhong
{"title":"在生物系统的集体运动中等级线的出现。","authors":"James M Greene,&nbsp;Eitan Tadmor,&nbsp;Ming Zhong","doi":"10.1088/1478-3975/acdc79","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of large-scale structures in biological systems, and in particular the formation of lines of hierarchy, is observed at many scales, from collections of cells to groups of insects to herds of animals. Motivated by phenomena in chemotaxis and phototaxis, we present a new class of alignment models that exhibit alignment into lines. The spontaneous formation of such 'fingers' can be interpreted as the emergence of leaders and followers in a system of identically interacting agents. Various numerical examples are provided, which demonstrate emergent behaviors similar to the 'fingering' phenomenon observed in some phototaxis and chemotaxis experiments; this phenomenon is generally known to be a challenging pattern for existing models to capture. A novel protocol for pairwise interactions provides a fundamental alignment mechanism by which agents may form lines of hierarchy across a wide range of biological systems.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The emergence of lines of hierarchy in collective motion of biological systems.\",\"authors\":\"James M Greene,&nbsp;Eitan Tadmor,&nbsp;Ming Zhong\",\"doi\":\"10.1088/1478-3975/acdc79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of large-scale structures in biological systems, and in particular the formation of lines of hierarchy, is observed at many scales, from collections of cells to groups of insects to herds of animals. Motivated by phenomena in chemotaxis and phototaxis, we present a new class of alignment models that exhibit alignment into lines. The spontaneous formation of such 'fingers' can be interpreted as the emergence of leaders and followers in a system of identically interacting agents. Various numerical examples are provided, which demonstrate emergent behaviors similar to the 'fingering' phenomenon observed in some phototaxis and chemotaxis experiments; this phenomenon is generally known to be a challenging pattern for existing models to capture. A novel protocol for pairwise interactions provides a fundamental alignment mechanism by which agents may form lines of hierarchy across a wide range of biological systems.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/acdc79\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acdc79","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

生物系统中大规模结构的出现,特别是等级线的形成,可以在许多尺度上观察到,从细胞集合到昆虫群到动物群。受趋化性和光性现象的启发,我们提出了一类新的排列模型,显示成线排列。这种“手指”的自发形成可以解释为领导者和追随者在一个具有相同相互作用主体的系统中出现。提供了各种数值例子,证明了类似于在一些趋光性和趋化性实验中观察到的“手指”现象的紧急行为;这种现象通常被认为是现有模型难以捕捉的模式。一种新的两两相互作用的协议提供了一种基本的对齐机制,通过这种机制,代理可以在广泛的生物系统中形成层次结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The emergence of lines of hierarchy in collective motion of biological systems.

The emergence of large-scale structures in biological systems, and in particular the formation of lines of hierarchy, is observed at many scales, from collections of cells to groups of insects to herds of animals. Motivated by phenomena in chemotaxis and phototaxis, we present a new class of alignment models that exhibit alignment into lines. The spontaneous formation of such 'fingers' can be interpreted as the emergence of leaders and followers in a system of identically interacting agents. Various numerical examples are provided, which demonstrate emergent behaviors similar to the 'fingering' phenomenon observed in some phototaxis and chemotaxis experiments; this phenomenon is generally known to be a challenging pattern for existing models to capture. A novel protocol for pairwise interactions provides a fundamental alignment mechanism by which agents may form lines of hierarchy across a wide range of biological systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信